DiscoverHuggingFace 每日AI论文速递
HuggingFace 每日AI论文速递
Claim Ownership

HuggingFace 每日AI论文速递

Author: duan

Subscribed: 11Played: 105
Share

Description

每天10分钟,带您快速了解当日HuggingFace热门AI论文内容。每个工作日更新,欢迎订阅。

📢播客节目在小宇宙、Apple Podcast平台搜索【HuggingFace 每日AI论文速递】

🖼另外还有图文版,可在小红书搜索并关注【AI速递】
407 Episodes
Reverse
本期的 14 篇论文如下:[00:16] 🌱 Agent Learning via Early Experience(基于早期经验的主体学习)[00:50] 🧠 MM-HELIX: Boosting Multimodal Long-Chain Reflective Reasoning with Holistic Platform and Adaptive Hybrid Policy Optimization(MM-HELIX:以整体平台与自适应混合策略优化激发多模态长链反思推理)[01:42] 🧪 From What to Why: A Multi-Agent System for Evidence-based Chemical Reaction Condition Reasoning(从“是什么”到“为什么”:面向循证化学反应条件推理的多智能体系统)[02:19] 🎬 UniVideo: Unified Understanding, Generation, and Editing for Videos(UniVideo:统一理解、生成与编辑视频的多模态框架)[03:01] 🧠 When Thoughts Meet Facts: Reusable Reasoning for Long-Context LMs(当思想邂逅事实:面向长上下文语言模型的可复用推理)[03:43] 🧠 Meta-Awareness Enhances Reasoning Models: Self-Alignment Reinforcement Learning(元认知增强推理模型:自对齐强化学习)[04:25] 🧠 MemMamba: Rethinking Memory Patterns in State Space Model(MemMamba:重新思考状态空间模型中的记忆模式)[05:17] 🛡 The Alignment Waltz: Jointly Training Agents to Collaborate for Safety(对齐圆舞曲:联合训练智能体协同守护安全)[05:53] 🎯 Hybrid Reinforcement: When Reward Is Sparse, It's Better to Be Dense(混合强化:奖励稀疏时,密集信号更胜一筹)[06:40] 🧪 NewtonBench: Benchmarking Generalizable Scientific Law Discovery in LLM Agents(NewtonBench:评测大模型智能体在通用科学定律发现中的基准)[07:17] 🪚 DeepPrune: Parallel Scaling without Inter-trace Redundancy(DeepPrune:并行扩展中消除跨路径冗余的高效推理框架)[07:54] 🚀 Training-Free Group Relative Policy Optimization(免训练群组相对策略优化)[08:24] 🪄 ARTDECO: Towards Efficient and High-Fidelity On-the-Fly 3D Reconstruction with Structured Scene Representation(ARTDECO:面向高效高保真即时三维重建的结构化场景表征)[08:55] 🤥 LLMs Learn to Deceive Unintentionally: Emergent Misalignment in Dishonesty from Misaligned Samples to Biased Human-AI Interactions(大模型在欺骗性样本与偏见人机交互中意外学会欺骗:不诚实行为的新兴错位)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 15 篇论文如下:[00:21] 🔄 Ming-UniVision: Joint Image Understanding and Generation with a Unified Continuous Tokenizer(Ming-UniVision:用统一连续视觉词表打通图像理解与生成)[00:59] 🧠 Cache-to-Cache: Direct Semantic Communication Between Large Language Models(缓存到缓存:大模型间的直接语义通信)[01:32] 🌀 Lumina-DiMOO: An Omni Diffusion Large Language Model for Multi-Modal Generation and Understanding(Lumina-DiMOO:面向多模态生成与理解的离散扩散大模型)[02:07] 🧠 SHANKS: Simultaneous Hearing and Thinking for Spoken Language Models(SHANKS:口语模型边听边想的同步推理框架)[03:06] 🤖 RLinf-VLA: A Unified and Efficient Framework for VLA+RL Training(RLinf-VLA:面向VLA模型强化学习训练的统一高效框架)[04:02] 🎬 MATRIX: Mask Track Alignment for Interaction-aware Video Generation(MATRIX:面向交互感知视频生成的掩码轨迹对齐)[04:51] 🎯 Vibe Checker: Aligning Code Evaluation with Human Preference(Vibe Checker:让代码评估对齐人类偏好)[05:44] 🤖 Multi-Agent Tool-Integrated Policy Optimization(多智能体工具集成策略优化)[06:24] 🧠 CALM Before the STORM: Unlocking Native Reasoning for Optimization Modeling(风暴前夜:解锁优化建模原生推理潜能的轻量化矫正框架)[06:59] ✂ OBS-Diff: Accurate Pruning For Diffusion Models in One-Shot(OBS-Diff:一次性精准剪枝扩散模型)[07:52] 🧠 Artificial Hippocampus Networks for Efficient Long-Context Modeling(面向高效长上下文建模的人工海马网络)[08:30] 🔍 Revisiting Long-context Modeling from Context Denoising Perspective(基于上下文降噪视角的长文本建模再审视)[09:11] 🧠 Pushing on Multilingual Reasoning Models with Language-Mixed Chain-of-Thought(推动多语言推理模型:语言混合思维链新范式)[09:51] 💥 Why Low-Precision Transformer Training Fails: An Analysis on Flash Attention(低精度Transformer训练为何失败:Flash Attention失效机理剖析)[10:37] ⚡ Native Hybrid Attention for Efficient Sequence Modeling(原生混合注意力高效序列建模)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 15 篇论文如下:[00:24] 📊 TaTToo: Tool-Grounded Thinking PRM for Test-Time Scaling in Tabular Reasoning(TaTToo:面向表格推理测试时扩展的“工具落地思维”过程奖励模型)[00:57] 🔍 Fathom-DeepResearch: Unlocking Long Horizon Information Retrieval and Synthesis for SLMs(Fathom-DeepResearch:解锁小模型长程信息检索与综合的钥匙)[01:39] 🚀 Fast-dLLM v2: Efficient Block-Diffusion LLM(Fast-dLLM v2:高效的块扩散大语言模型)[02:30] 🧑 CoDA: Coding LM via Diffusion Adaptation(CoDA:基于扩散适配的轻量级代码生成模型)[03:01] 🧩 Scaling Code-Assisted Chain-of-Thoughts and Instructions for Model Reasoning(规模化代码辅助思维链与指令以增强模型推理)[03:52] ⚖ ASPO: Asymmetric Importance Sampling Policy Optimization(ASPO:非对称重要性采样策略优化)[04:34] 🔗 Mixing Mechanisms: How Language Models Retrieve Bound Entities In-Context(混合机制:语言模型如何在上下文中检索绑定实体)[05:15] 🧠 AInstein: Assessing the Feasibility of AI-Generated Approaches to Research Problems(AInstein:评估AI生成科研方案可行性的研究框架)[05:51] 🪂 Refusal Falls off a Cliff: How Safety Alignment Fails in Reasoning?(拒绝断崖:安全对齐在推理中为何崩塌)[06:35] 🌍 HoloScene: Simulation-Ready Interactive 3D Worlds from a Single Video(HoloScene:单视频生成可交互3D仿真世界)[07:22] ⚡ TensorBLEU: Vectorized GPU-based BLEU Score Implementation for Per-Sentence In-Training Evaluation(TensorBLEU:面向逐句训练评估的向量化GPU加速BLEU分数实现)[08:09] 🎯 Margin Adaptive DPO: Leveraging Reward Model for Granular Control in Preference Optimization(边缘自适应DPO:利用奖励模型实现偏好优化的粒度控制)[09:00] 🩺 Discrete Diffusion Models with MLLMs for Unified Medical Multimodal Generation(基于多模态大语言模型的离散扩散模型实现统一医学多模态生成)[09:46] 🧠 MixReasoning: Switching Modes to Think(混合推理:动态切换思考模式)[10:20] ⚡ LightCache: Memory-Efficient, Training-Free Acceleration for Video Generation(LightCache:面向视频生成的内存高效、无需训练的加速方法)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 15 篇论文如下:[00:21] 🎬 Paper2Video: Automatic Video Generation from Scientific Papers(论文自动生成学术演讲视频)[00:55] 🎬 Video-LMM Post-Training: A Deep Dive into Video Reasoning with Large Multimodal Models(Video-LMM后训练:深入剖析大型多模态模型的视频推理)[01:38] 🎬 VChain: Chain-of-Visual-Thought for Reasoning in Video Generation(VChain:面向视频生成推理的视觉思维链)[02:14] 👻 Imperceptible Jailbreaking against Large Language Models(针对大语言模型的隐形越狱攻击)[02:56] 🌳 MITS: Enhanced Tree Search Reasoning for LLMs via Pointwise Mutual Information(MITS:基于点互信息的树搜索增强大模型推理)[03:30] 🧬 Hybrid Architectures for Language Models: Systematic Analysis and Design Insights(语言模型混合架构:系统剖析与设计洞见)[04:07] 📊 Factuality Matters: When Image Generation and Editing Meet Structured Visuals(事实至关重要:当图像生成与编辑遇上结构化视觉)[04:59] 🔄 Reactive Transformer (RxT) -- Stateful Real-Time Processing for Event-Driven Reactive Language Models(反应式Transformer:事件驱动的实时有状态对话模型)[05:55] ⚖ Judging with Confidence: Calibrating Autoraters to Preference Distributions(置信评判:将自动评分器校准到偏好分布)[06:44] 🎯 Reinforce-Ada: An Adaptive Sampling Framework for Reinforce-Style LLM Training(Reinforce-Ada:面向Reinforce风格LLM训练的自适应采样框架)[07:27] 📏 Optimal Scaling Needs Optimal Norm(最优扩放需要最优范数)[07:51] 🔬 Code4MeV2: a Research-oriented Code-completion Platform(Code4MeV2:面向研究的代码补全平台)[08:31] 🪞 Self-Reflective Generation at Test Time(测试时自反思生成)[09:15] 🔄 SwiReasoning: Switch-Thinking in Latent and Explicit for Pareto-Superior Reasoning LLMs(SwiReasoning:在显式与潜空间之间切换思维,实现帕累托更优的推理大模型)[10:00] 👀 Watch and Learn: Learning to Use Computers from Online Videos(观看与学习:从在线视频中学习使用计算机)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 15 篇论文如下:[00:28] 🧠 Apriel-1.5-15b-Thinker(Apriel-1.5-15B-Thinker:以小博大实现前沿多模态推理的15B开源模型)[01:04] 🚀 Efficient Multi-modal Large Language Models via Progressive Consistency Distillation(基于渐进一致性蒸馏的高效多模态大模型)[01:42] 🧩 Compose Your Policies! Improving Diffusion-based or Flow-based Robot Policies via Test-time Distribution-level Composition(组合式策略!利用测试时段分布级组合提升基于扩散或流的机器人策略性能)[02:19] 🪞 Self-Improvement in Multimodal Large Language Models: A Survey(多模态大语言模型自我提升综述)[02:59] 🧬 Your Agent May Misevolve: Emergent Risks in Self-evolving LLM Agents(你的智能体可能误入歧途:自演化大模型智能体中的涌现风险)[03:38] 📊 CoDA: Agentic Systems for Collaborative Data Visualization(CoDA:面向协同数据可视化的智能体系统)[04:21] 🧐 SurveyBench: How Well Can LLM(-Agents) Write Academic Surveys?(SurveyBench:大模型(智能体)写学术综述能有多靠谱?)[05:06] 🔧 REPAIR: Robust Editing via Progressive Adaptive Intervention and Reintegration(REPAIR:渐进式自适应干预与再融合的鲁棒编辑框架)[05:53] 🔍 OrtSAE: Orthogonal Sparse Autoencoders Uncover Atomic Features(OrtSAE:正交稀疏自编码器揭示原子级特征)[06:38] 🔍 FocusAgent: Simple Yet Effective Ways of Trimming the Large Context of Web Agents(FocusAgent:轻量级检索器为网页智能体精简冗长上下文的简易高效方案)[07:14] 🎯 Improving GUI Grounding with Explicit Position-to-Coordinate Mapping(基于显式位置-坐标映射的GUI定位改进方法)[08:05] 📏 LSPO: Length-aware Dynamic Sampling for Policy Optimization in LLM Reasoning(LSPO:面向大模型推理的基于长度感知的动态采样策略优化)[08:45] 🤖 WAInjectBench: Benchmarking Prompt Injection Detections for Web Agents(WAInjectBench:面向网页智能体的提示注入攻防基准评测)[09:19] 🍱 Free Lunch Alignment of Text-to-Image Diffusion Models without Preference Image Pairs(无需配对偏好图像即可免费对齐文本到图像扩散模型)[09:54] 🎯 LEAML: Label-Efficient Adaptation to Out-of-Distribution Visual Tasks for Multimodal Large Language Models(LEAML:面向多模态大模型的标签高效分布外视觉任务适配)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 5 篇论文如下:[00:43] TOP1(🔥323) | 🐣 The Dragon Hatchling: The Missing Link between the Transformer and Models of the Brain(幼龙破壳: Transformer 与大脑模型之间缺失的环节)[02:38] TOP2(🔥167) | 🎬 LongLive: Real-time Interactive Long Video Generation(LongLive:实时交互式长视频生成框架)[05:04] TOP3(🔥150) | 🔥 MCPMark: A Benchmark for Stress-Testing Realistic and Comprehensive MCP Use(MCPMark:面向真实且全面的MCP应用场景的压力测试基准)[07:24] TOP4(🔥124) | 🧠 EPO: Entropy-regularized Policy Optimization for LLM Agents Reinforcement Learning(EPO:面向LLM智能体强化学习的熵正则策略优化)[09:18] TOP5(🔥122) | 🎮 Vision-Zero: Scalable VLM Self-Improvement via Strategic Gamified Self-Play(Vision-Zero:基于策略化博弈自对弈的可扩展视觉语言模型自我提升)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 15 篇论文如下:[00:22] 🗜 LongCodeZip: Compress Long Context for Code Language Models(LongCodeZip:面向代码大模型的长上下文压缩方法)[00:56] 🎬 Self-Forcing++: Towards Minute-Scale High-Quality Video Generation(自增强++:迈向分钟级高质量视频生成)[01:38] 🧠 ExGRPO: Learning to Reason from Experience(基于经验的群体相对策略优化:让大模型学会从经验中推理)[02:32] 🥷 StealthAttack: Robust 3D Gaussian Splatting Poisoning via Density-Guided Illusions(隐身投毒:基于密度引导幻觉的鲁棒3D高斯溅射攻击)[03:32] 🎛 Interactive Training: Feedback-Driven Neural Network Optimization(交互式训练:反馈驱动的神经网络优化)[04:24] 📈 StockBench: Can LLM Agents Trade Stocks Profitably In Real-world Markets?(StockBench:大模型智能体能否在真实股市中稳定盈利?)[05:07] 🔍 VOGUE: Guiding Exploration with Visual Uncertainty Improves Multimodal Reasoning(VOGUE:用视觉不确定性引导探索,提升多模态推理)[05:44] 🪓 The Rogue Scalpel: Activation Steering Compromises LLM Safety(失控的手术刀:激活向量操控竟瓦解大模型安全锁)[06:21] 🔍 CLUE: Non-parametric Verification from Experience via Hidden-State Clustering(CLUE:基于隐状态聚类的非参数经验验证)[07:09] 🔍 ModernVBERT: Towards Smaller Visual Document Retrievers(ModernVBERT:打造更轻量的视觉文档检索器)[07:54] 🗺 RewardMap: Tackling Sparse Rewards in Fine-grained Visual Reasoning via Multi-Stage Reinforcement Learning(RewardMap:通过多阶段强化学习解决细粒度视觉推理中的稀疏奖励问题)[08:37] 🚀 F2LLM Technical Report: Matching SOTA Embedding Performance with 6 Million Open-Source Data(F2LLM技术报告:仅用600万开源数据即可达到SOTA嵌入性能)[09:13] 🧠 RLP: Reinforcement as a Pretraining Objective(RLP:将强化学习作为预训练目标)[09:45] 🖱 DragFlow: Unleashing DiT Priors with Region Based Supervision for Drag Editing(DragFlow:借助区域监督释放DiT先验,实现拖拽式编辑)[10:19] 🚀 The Unreasonable Effectiveness of Scaling Agents for Computer Use(扩展计算机使用代理的规模带来的不合理有效性)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 15 篇论文如下:[00:19] 🧠 DeepSearch: Overcome the Bottleneck of Reinforcement Learning with Verifiable Rewards via Monte Carlo Tree Search(DeepSearch:以蒙特卡洛树搜索破解强化学习可验证奖励瓶颈)[01:20] 🤖 GEM: A Gym for Agentic LLMs(GEM:面向智能体大模型的开放训练场)[01:57] 🧠 VLA-RFT: Vision-Language-Action Reinforcement Fine-tuning with Verified Rewards in World Simulators(VLA-RFT:基于世界模拟器与验证奖励的视觉-语言-动作强化微调)[02:36] 🎒 Knapsack RL: Unlocking Exploration of LLMs via Optimizing Budget Allocation(背包强化学习:通过优化预算分配解锁大模型探索潜能)[03:06] 🎬 Code2Video: A Code-centric Paradigm for Educational Video Generation(Code2Video:面向教育视频生成的代码中心范式)[03:41] ⚙ PIPer: On-Device Environment Setup via Online Reinforcement Learning(PIPer:基于在线强化学习的设备端环境自动配置)[04:11] 🗜 ACON: Optimizing Context Compression for Long-horizon LLM Agents(ACON:面向长程LLM智能体的上下文压缩优化)[04:52] 🔍 Why Can't Transformers Learn Multiplication? Reverse-Engineering Reveals Long-Range Dependency Pitfalls(为何Transformer学不会乘法?逆向工程揭示长程依赖陷阱)[05:22] ⚖ BiasFreeBench: a Benchmark for Mitigating Bias in Large Language Model Responses(BiasFreeBench:面向大语言模型去偏响应评测的统一基准)[06:01] ⚡ Flash-Searcher: Fast and Effective Web Agents via DAG-Based Parallel Execution(Flash-Searcher:基于DAG并行执行的极速高效网络智能体)[06:42] 🚀 BroRL: Scaling Reinforcement Learning via Broadened Exploration(BroRL:通过拓宽探索规模来扩展强化学习)[07:25] 📊 Beyond Log Likelihood: Probability-Based Objectives for Supervised Fine-Tuning across the Model Capability Continuum(超越对数似然:面向模型能力连续谱的监督微调概率目标)[08:02] 🎯 On Predictability of Reinforcement Learning Dynamics for Large Language Models(论大型语言模型强化学习动力学的可预测性)[08:31] 🖥 GUI-KV: Efficient GUI Agents via KV Cache with Spatio-Temporal Awareness(GUI-KV:面向具备时空感知的高效GUI智能体的KV缓存方案)[09:17] 🧠 Training Vision-Language Process Reward Models for Test-Time Scaling in Multimodal Reasoning: Key Insights and Lessons Learned(训练视觉-语言过程奖励模型以实现多模态推理测试时扩展:关键洞见与经验总结)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 10 篇论文如下:[00:29] TOP1(🔥640) | 🤝 Sharing is Caring: Efficient LM Post-Training with Collective RL Experience Sharing(共享即关爱:基于集体RL经验共享的高效大模型后训练)[02:49] TOP2(🔥341) | 🔒 A.S.E: A Repository-Level Benchmark for Evaluating Security in AI-Generated Code(A.S.E:一个用于评估AI生成代码安全的仓库级基准)[04:59] TOP3(🔥218) | 🤖 VLA-Adapter: An Effective Paradigm for Tiny-Scale Vision-Language-Action Model(VLA-Adapter:面向小型视觉-语言-动作模型的有效范式)[07:07] TOP4(🔥212) | 🤖 The Landscape of Agentic Reinforcement Learning for LLMs: A Survey(面向大语言模型的智能体强化学习全景:一项综述)[09:17] TOP5(🔥207) | 🤔 Drivel-ology: Challenging LLMs with Interpreting Nonsense with Depth(废话学:用深度解读无意义内容挑战大型语言模型)[11:19] TOP6(🔥183) | 🤔 Why Language Models Hallucinate(语言模型为何产生幻觉)[13:06] TOP7(🔥174) | 🧠 A Survey of Reinforcement Learning for Large Reasoning Models(大型推理模型的强化学习综述)[15:32] TOP8(🔥160) | 🎬 LongLive: Real-time Interactive Long Video Generation(LongLive:实时交互式长视频生成框架)[18:13] TOP9(🔥145) | 💡 Reverse-Engineered Reasoning for Open-Ended Generation(面向开放式生成的逆向工程推理)[20:27] TOP10(🔥140) | 🤖 A Survey of Scientific Large Language Models: From Data Foundations to Agent Frontiers(科学大型语言模型综述:从数据基础到智能体前沿)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 15 篇论文如下:[00:20] 🎮 Vision-Zero: Scalable VLM Self-Improvement via Strategic Gamified Self-Play(Vision-Zero:基于策略化博弈自对弈的可扩展视觉语言模型自我提升)[00:59] 🔥 MCPMark: A Benchmark for Stress-Testing Realistic and Comprehensive MCP Use(MCPMark:面向真实且全面的MCP应用场景的压力测试基准)[01:36] 🐣 The Dragon Hatchling: The Missing Link between the Transformer and Models of the Brain(幼龙破壳: Transformer 与大脑模型之间缺失的环节)[02:10] 🤥 TruthRL: Incentivizing Truthful LLMs via Reinforcement Learning(TruthRL:通过强化学习激励大模型说真话)[02:55] 🌊 OceanGym: A Benchmark Environment for Underwater Embodied Agents(OceanGym:面向水下具身智能体的综合基准环境)[03:41] ⚡ DC-VideoGen: Efficient Video Generation with Deep Compression Video Autoencoder(DC-VideoGen:基于深度压缩视频自编码器的高效视频生成)[04:14] 🔍 Who's Your Judge? On the Detectability of LLM-Generated Judgments(谁是你的评审?大模型生成评审意见的检测性研究)[04:59] ✂ Winning the Pruning Gamble: A Unified Approach to Joint Sample and Token Pruning for Efficient Supervised Fine-Tuning(赢得剪枝豪赌:统一样本-令牌剪枝的高效监督微调新方法)[05:45] 👁 Learning to See Before Seeing: Demystifying LLM Visual Priors from Language Pre-training(未见先识:从语言预训练解密大模型视觉先验)[06:24] 🧠 Thinking Sparks!: Emergent Attention Heads in Reasoning Models During Post Training(思维火花!后训练阶段推理模型中涌现的专用注意力头)[07:09] 🧪 VitaBench: Benchmarking LLM Agents with Versatile Interactive Tasks in Real-world Applications(VitaBench:面向真实场景多功能交互任务的LLM智能体评测基准)[07:42] ⚡ dParallel: Learnable Parallel Decoding for dLLMs(dParallel:面向扩散大语言模型的可学习并行解码)[08:28] 🎯 IMG: Calibrating Diffusion Models via Implicit Multimodal Guidance(IMG:通过隐式多模态引导校准扩散模型)[09:15] 🎬 MotionRAG: Motion Retrieval-Augmented Image-to-Video Generation(MotionRAG:基于运动检索增强的图像到视频生成)[10:12] 🐬 Efficient Audio-Visual Speech Separation with Discrete Lip Semantics and Multi-Scale Global-Local Attention(基于离散唇部语义与多尺度全局-局部注意力的高效视听语音分离)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 15 篇论文如下:[00:22] ⚡ SLA: Beyond Sparsity in Diffusion Transformers via Fine-Tunable Sparse-Linear Attention(SLA:通过可微调稀疏线性注意力突破扩散Transformer的稀疏性极限)[01:05] 🗣 StableToken: A Noise-Robust Semantic Speech Tokenizer for Resilient SpeechLLMs(StableToken:一种面向韧性SpeechLLM的噪声鲁棒语义语音分词器)[01:54] 🎮 Multiplayer Nash Preference Optimization(多玩家纳什偏好优化)[02:57] 🔗 RealUnify: Do Unified Models Truly Benefit from Unification? A Comprehensive Benchmark(RealUnify:统一模型真的因“统一”而更强吗?综合基准揭晓答案)[03:44] 🎨 OpenGPT-4o-Image: A Comprehensive Dataset for Advanced Image Generation and Editing(OpenGPT-4o-Image:面向高级图像生成与编辑的大规模综合数据集)[04:28] 🧠 Beyond the Exploration-Exploitation Trade-off: A Hidden State Approach for LLM Reasoning in RLVR(超越探索-利用权衡:面向RLVR中LLM推理的隐状态方法)[05:05] 🧩 Visual Jigsaw Post-Training Improves MLLMs(视觉拼图后训练提升多模态大模型)[05:37] 🎬 SANA-Video: Efficient Video Generation with Block Linear Diffusion Transformer(SANA-Video:基于分块线性注意力Transformer的高效视频扩散生成模型)[06:15] 🔬 Democratizing AI scientists using ToolUniverse(用ToolUniverse普及AI科学家)[06:59] 🧠 When Does Reasoning Matter? A Controlled Study of Reasoning's Contribution to Model Performance(推理何时真正奏效?对推理贡献度的受控研究)[07:31] 📊 GSM8K-V: Can Vision Language Models Solve Grade School Math Word Problems in Visual Contexts(GSM8K-V:视觉语言模型能否解决视觉语境下的小学数学应用题?)[08:04] 🖼 EditScore: Unlocking Online RL for Image Editing via High-Fidelity Reward Modeling(EditScore:借助高保真奖励建模解锁图像编辑在线强化学习)[08:54] 🚀 SparseD: Sparse Attention for Diffusion Language Models(SparseD:面向扩散语言模型的稀疏注意力机制)[09:40] 🎛 EasySteer: A Unified Framework for High-Performance and Extensible LLM Steering(EasySteer:高性能可扩展LLM推理控制统一框架)[10:32] 🧠 Towards Personalized Deep Research: Benchmarks and Evaluations(迈向个性化深度研究:基准与评估)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 15 篇论文如下:[00:20] 🎬 LongLive: Real-time Interactive Long Video Generation(LongLive:实时交互式长视频生成框架)[00:56] 🎯 Quantile Advantage Estimation for Entropy-Safe Reasoning(用于熵安全推理的分位数优势估计)[01:34] 📄 MinerU2.5: A Decoupled Vision-Language Model for Efficient High-Resolution Document Parsing(MinerU2.5:面向高效高分辨率文档解析的解耦视觉-语言模型)[02:11] 🧠 EPO: Entropy-regularized Policy Optimization for LLM Agents Reinforcement Learning(EPO:面向LLM智能体强化学习的熵正则策略优化)[03:08] 🧠 Variational Reasoning for Language Models(语言模型的变分推理框架)[03:37] 💬 Language Models Can Learn from Verbal Feedback Without Scalar Rewards(无需标量奖励,语言模型也能从语言反馈中学习)[04:32] 🔍 ReviewScore: Misinformed Peer Review Detection with Large Language Models(ReviewScore:用大模型揪出“跑偏”的同行评审)[05:12] 🎯 CapRL: Stimulating Dense Image Caption Capabilities via Reinforcement Learning(CapRL:用强化学习激发稠密图像描述潜能)[05:49] 🪄 MesaTask: Towards Task-Driven Tabletop Scene Generation via 3D Spatial Reasoning(MesaTask:面向任务驱动的桌面场景生成与3D空间推理)[06:32] 🎯 No Prompt Left Behind: Exploiting Zero-Variance Prompts in LLM Reinforcement Learning via Entropy-Guided Advantage Shaping(零方差提示不浪费:基于熵引导优势塑造的LLM强化学习新范式)[07:14] 🗣 VoiceAssistant-Eval: Benchmarking AI Assistants across Listening, Speaking, and Viewing(VoiceAssistant-Eval:横跨听、说、看的AI助手基准测评)[07:58] 🧭 UltraHorizon: Benchmarking Agent Capabilities in Ultra Long-Horizon Scenarios(UltraHorizon:在长周期场景中评估智能体能力的基准)[08:29] 🖼 LucidFlux: Caption-Free Universal Image Restoration via a Large-Scale Diffusion Transformer(LucidFlux:无需文字描述的大规模扩散Transformer通用图像修复)[09:16] 🌐 WebGen-Agent: Enhancing Interactive Website Generation with Multi-Level Feedback and Step-Level Reinforcement Learning(WebGen-Agent:借助多级反馈与步骤级强化学习提升交互式网页生成)[09:49] 🔄 SPARK: Synergistic Policy And Reward Co-Evolving Framework(SPARK:策略与奖励协同演化的强化学习框架)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 5 篇论文如下:[00:38] TOP1(🔥116) | 📜 Baseer: A Vision-Language Model for Arabic Document-to-Markdown OCR(Baseer:面向阿拉伯文档OCR的视觉-语言模型)[02:43] TOP2(🔥113) | 🌐 Qwen3-Omni Technical Report(Qwen3-Omni技术报告:首个无性能损耗的全模态大模型)[05:23] TOP3(🔥112) | 🗺 RPG: A Repository Planning Graph for Unified and Scalable Codebase Generation(RPG:用于统一可扩展代码库生成的仓库规划图)[07:45] TOP4(🔥104) | 📈 VCRL: Variance-based Curriculum Reinforcement Learning for Large Language Models(VCRL:面向大语言模型的方差驱动课程强化学习)[10:05] TOP5(🔥89) | 🚀 LIMI: Less is More for Agency(LIMI:少即是多,打造AI智能体)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 15 篇论文如下:[00:20] 🔬 SciReasoner: Laying the Scientific Reasoning Ground Across Disciplines(SciReasoner:跨学科夯实科学推理基石)[01:00] 🧠 MMR1: Enhancing Multimodal Reasoning with Variance-Aware Sampling and Open Resources(MMR1:基于方差感知采样与开放资源的多模态推理增强)[01:41] 📈 VCRL: Variance-based Curriculum Reinforcement Learning for Large Language Models(VCRL:面向大语言模型的方差驱动课程强化学习)[02:26] 🌳 Tree Search for LLM Agent Reinforcement Learning(基于树搜索的大语言模型智能体强化学习)[03:06] 🖼 Seedream 4.0: Toward Next-generation Multimodal Image Generation(Seedream 4.0:面向下一代多模态图像生成)[03:40] 🎯 Hunyuan3D-Omni: A Unified Framework for Controllable Generation of 3D Assets(Hunyuan3D-Omni:统一可控3D资产生成框架)[04:29] 🤖 AutoIntent: AutoML for Text Classification(AutoIntent:面向文本分类任务的自动化机器学习框架)[05:10] ⚖ TrustJudge: Inconsistencies of LLM-as-a-Judge and How to Alleviate Them(TrustJudge:LLM-as-a-Judge的评分不一致性及缓解之道)[05:43] 🎢 CE-GPPO: Controlling Entropy via Gradient-Preserving Clipping Policy Optimization in Reinforcement Learning(CE-GPPO:通过梯度保留裁剪策略优化控制强化学习中的熵)[06:30] 🖼 Does FLUX Already Know How to Perform Physically Plausible Image Composition?(FLUX已掌握物理可信图像合成?)[07:31] ✂ CHARM: Control-point-based 3D Anime Hairstyle Auto-Regressive Modeling(CHARM:基于控制点的3D动漫发型自回归建模)[08:26] 🧠 Recon-Act: A Self-Evolving Multi-Agent Browser-Use System via Web Reconnaissance, Tool Generation, and Task Execution(Recon-Act:基于网络侦察、工具生成与任务执行的自我演化多智能体浏览器操作系统)[09:12] 🎮 V-GameGym: Visual Game Generation for Code Large Language Models(V-GameGym:面向代码大模型的视觉游戏生成基准)[09:49] 🗣 Interactive Recommendation Agent with Active User Commands(支持主动用户指令的交互式推荐智能体)[10:22] 🔍 BESPOKE: Benchmark for Search-Augmented Large Language Model Personalization via Diagnostic Feedback(BESPOKE:基于诊断反馈的搜索增强大模型个性化评测基准)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 10 篇论文如下:[00:22] 🎥 Video models are zero-shot learners and reasoners(视频模型是零样本学习者与推理者)[01:09] 🧠 SIM-CoT: Supervised Implicit Chain-of-Thought(SIM-CoT:基于监督式隐式思维链的高效推理)[01:55] 🪶 EmbeddingGemma: Powerful and Lightweight Text Representations(EmbeddingGemma:强大而轻量的文本表征模型)[02:29] 🗣 Advancing Speech Understanding in Speech-Aware Language Models with GRPO(基于GRPO提升语音感知大模型开放域理解能力)[03:06] 🌍 LLMs4All: A Review on Large Language Models for Research and Applications in Academic Disciplines(LLMs4All:面向各学科研究与应用的通用大模型综述)[03:52] 🎬 EditVerse: Unifying Image and Video Editing and Generation with In-Context Learning(EditVerse:用上下文学习统一图像与视频编辑生成)[04:29] 🌀 Lavida-O: Elastic Large Masked Diffusion Models for Unified Multimodal Understanding and Generation(Lavida-O:弹性大掩码扩散模型统一多模态理解与生成)[05:19] 🎬 PhysCtrl: Generative Physics for Controllable and Physics-Grounded Video Generation(PhysCtrl:基于生成式物理的可控且物理真实的视频生成框架)[05:58] 📄 Logics-Parsing Technical Report(Logics-Parsing 技术报告:基于强化学习的大模型端到端文档解析)[06:44] 🤖 On the Use of Agentic Coding: An Empirical Study of Pull Requests on GitHub(关于自主编码的实证研究:GitHub上由AI代理发起的拉取请求分析)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 15 篇论文如下:[00:24] 📜 Baseer: A Vision-Language Model for Arabic Document-to-Markdown OCR(Baseer:面向阿拉伯文档OCR的视觉-语言模型)[00:58] 🚀 Reinforcement Learning on Pre-Training Data(基于预训练数据的强化学习)[01:37] 👁 Do You Need Proprioceptive States in Visuomotor Policies?(无需本体感觉状态的视觉-运动策略是否可行?)[02:36] 🚀 MiniCPM-V 4.5: Cooking Efficient MLLMs via Architecture, Data, and Training Recipe(MiniCPM-V 4.5:通过架构、数据与训练配方烹饪高效多模态大模型)[03:24] 🎯 MAPO: Mixed Advantage Policy Optimization(混合优势策略优化:解决GRPO中优势分配难题)[04:06] 🚀 Hyper-Bagel: A Unified Acceleration Framework for Multimodal Understanding and Generation(Hyper-Bagel:统一加速多模态理解与生成的一体化框架)[04:44] 🎯 VolSplat: Rethinking Feed-Forward 3D Gaussian Splatting with Voxel-Aligned Prediction(VolSplat:基于体素对齐预测的前馈3D高斯抛雪球重建新范式)[05:31] 🌌 Lyra: Generative 3D Scene Reconstruction via Video Diffusion Model Self-Distillation(Lyra:基于视频扩散模型自蒸馏的生成式3D场景重建)[06:08] 🧩 What Characterizes Effective Reasoning? Revisiting Length, Review, and Structure of CoT(有效推理的密码:重新审视思维链长度、回顾与结构)[06:41] 🗣 Large Language Models Discriminate Against Speakers of German Dialects(大型语言模型对德语方言使用者的歧视)[07:32] 📊 OpenGVL - Benchmarking Visual Temporal Progress for Data Curation(OpenGVL——面向数据整理的视觉时序进展评测基准)[08:19] 🪄 HyRF: Hybrid Radiance Fields for Memory-efficient and High-quality Novel View Synthesis(HyRF:混合辐射场实现内存高效且高质量的新视角合成)[09:07] 🛠 CAR-Flow: Condition-Aware Reparameterization Aligns Source and Target for Better Flow Matching(条件感知重参数化对齐源域与目标域的流匹配)[09:41] 🛰 Zero-Shot Multi-Spectral Learning: Reimagining a Generalist Multimodal Gemini 2.5 Model for Remote Sensing Applications(零样本多光谱学习:让通用多模态Gemini 2.5模型在遥感任务中重焕新生)[10:28] 🌍 VIR-Bench: Evaluating Geospatial and Temporal Understanding of MLLMs via Travel Video Itinerary Reconstruction(VIR-Bench:通过旅行视频行程重建评测多模态大模型的地理-时空理解力)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 15 篇论文如下:[00:21] 🚀 LIMI: Less is More for Agency(LIMI:少即是多,打造AI智能体)[00:55] 🎬 OmniInsert: Mask-Free Video Insertion of Any Reference via Diffusion Transformer Models(无需掩膜的视频任意主体插入:基于扩散Transformer模型)[01:28] 🧩 OnePiece: Bringing Context Engineering and Reasoning to Industrial Cascade Ranking System(OnePiece:面向工业级级联排序系统的上下文工程与推理融合框架)[02:19] 🌐 Qwen3-Omni Technical Report(Qwen3-Omni技术报告:首个无性能损耗的全模态大模型)[02:55] 🎬 TempSamp-R1: Effective Temporal Sampling with Reinforcement Fine-Tuning for Video LLMs(TempSamp-R1:面向视频时序定位任务的高效离策略强化微调框架)[03:28] 📐 GeoPQA: Bridging the Visual Perception Gap in MLLMs for Geometric Reasoning(GeoPQA:弥合多模态大模型几何推理中的视觉感知鸿沟)[04:15] 🎯 DiffusionNFT: Online Diffusion Reinforcement with Forward Process(DiffusionNFT:基于前向过程在线扩散强化学习)[05:05] 🤖 ByteWrist: A Parallel Robotic Wrist Enabling Flexible and Anthropomorphic Motion for Confined Spaces(ByteWrist:面向狭窄空间的可穿戴并行机器人腕关节)[05:42] 💬 EpiCache: Episodic KV Cache Management for Long Conversational Question Answering(EpiCache:面向长对话问答的情景式KV缓存管理)[06:24] 🧠 SWE-Bench Pro: Can AI Agents Solve Long-Horizon Software Engineering Tasks?(SWE-Bench Pro:AI智能体能攻克长周期软件工程难题吗?)[07:01] 🧠 FlagEval Findings Report: A Preliminary Evaluation of Large Reasoning Models on Automatically Verifiable Textual and Visual Questions(FlagEval发现报告:大推理模型在可自动验证文本与视觉问题上的初步测评)[08:05] 🎬 VideoFrom3D: 3D Scene Video Generation via Complementary Image and Video Diffusion Models(VideoFrom3D:基于互补图像与视频扩散模型的3D场景视频生成)[08:53] 🧪 ARE: Scaling Up Agent Environments and Evaluations(ARE:扩展智能体环境与评测规模)[09:28] 🧩 QWHA: Quantization-Aware Walsh-Hadamard Adaptation for Parameter-Efficient Fine-Tuning on Large Language Models(QWHA:面向大模型量化部署的沃尔什-哈达玛参数高效微调方法)[10:17] 🔍 Analyzing the Effects of Supervised Fine-Tuning on Model Knowledge from Token and Parameter Levels(从token与参数双视角解析监督微调对模型知识的影响)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 13 篇论文如下:[00:25] 🗺 RPG: A Repository Planning Graph for Unified and Scalable Codebase Generation(RPG:用于统一可扩展代码库生成的仓库规划图)[01:00] 🌉 MANZANO: A Simple and Scalable Unified Multimodal Model with a Hybrid Vision Tokenizer(MANZANO:基于混合视觉词元器的简洁可扩展统一多模态模型)[01:42] 🧩 Latent Zoning Network: A Unified Principle for Generative Modeling, Representation Learning, and Classification(潜区分网络:生成建模、表示学习与分类的统一原理)[02:25] 🎯 BaseReward: A Strong Baseline for Multimodal Reward Model(BaseReward:多模态奖励模型的强力基线)[02:56] 🏠 SPATIALGEN: Layout-guided 3D Indoor Scene Generation(SpatialGen:布局引导的3D室内场景生成)[03:46] 🧠 BTL-UI: Blink-Think-Link Reasoning Model for GUI Agent(BTL-UI:面向GUI智能体的“眨眼-思考-连接”脑启发推理模型)[04:30] 🎭 Lynx: Towards High-Fidelity Personalized Video Generation(Lynx:面向高保真个性化视频生成)[05:20] 🤖 A Vision-Language-Action-Critic Model for Robotic Real-World Reinforcement Learning(用于机器人真实强化学习的视觉-语言-动作-评价模型)[05:54] 📹 RGB-Only Supervised Camera Parameter Optimization in Dynamic Scenes(动态场景下仅基于RGB视频监督的相机参数优化)[06:21] 🗣 Do You Hear What I Mean? Quantifying the Instruction-Perception Gap in Instruction-Guided Expressive Text-To-Speech Systems(你听见的是我想表达的吗?量化指令感知差距的表达型文本转语音系统研究)[07:07] 🎬 Video2Roleplay: A Multimodal Dataset and Framework for Video-Guided Role-playing Agents(Video2Roleplay:面向视频引导角色扮演智能体的多模态数据集与框架)[07:50] 🗣 WhisTLE: Deeply Supervised, Text-Only Domain Adaptation for Pretrained Speech Recognition Transformers(WhisTLE:面向预训练语音识别Transformer的纯文本深度监督域适应方法)[08:30] 🗣 Ask-to-Clarify: Resolving Instruction Ambiguity through Multi-turn Dialogue(主动询问以澄清:通过多轮对话消解指令歧义)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 5 篇论文如下:[00:43] TOP1(🔥95) | 🌍 OmniWorld: A Multi-Domain and Multi-Modal Dataset for 4D World Modeling(OmniWorld:面向4D世界建模的多领域多模态大规模数据集)[02:51] TOP2(🔥93) | 🔍 WebWeaver: Structuring Web-Scale Evidence with Dynamic Outlines for Open-Ended Deep Research(WebWeaver:面向开放型深度研究的动态提纲式网络证据结构化框架)[05:09] TOP3(🔥91) | 🤖 Scaling Agents via Continual Pre-training(基于持续预训练扩展智能体系统规模的研究)[07:33] TOP4(🔥88) | 🖥 ScaleCUA: Scaling Open-Source Computer Use Agents with Cross-Platform Data(ScaleCUA:基于跨平台数据的开源计算机智能体规模化方案)[10:48] TOP5(🔥79) | 🌊 FlowRL: Matching Reward Distributions for LLM Reasoning(FlowRL:通过流匹配奖励分布提升大语言模型推理能力)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
本期的 15 篇论文如下:[00:26] 🖥 ScaleCUA: Scaling Open-Source Computer Use Agents with Cross-Platform Data(ScaleCUA:基于跨平台数据的开源计算机智能体规模化方案)[01:01] 🌊 FlowRL: Matching Reward Distributions for LLM Reasoning(FlowRL:通过流匹配奖励分布提升大语言模型推理能力)[01:57] 🧭 Reasoning over Boundaries: Enhancing Specification Alignment via Test-time Delibration(跨越边界推理:借助测试时深思提升规范对齐)[02:55] 🧬 Evolving Language Models without Labels: Majority Drives Selection, Novelty Promotes Variation(无需标签即可让语言模型自我进化:多数选择驱动,新颖性促进变异)[03:34] 🎨 Understand Before You Generate: Self-Guided Training for Autoregressive Image Generation(先理解再生成:面向自回归图像生成的自引导训练)[04:12] 🔍 FinSearchComp: Towards a Realistic, Expert-Level Evaluation of Financial Search and Reasoning(FinSearchComp:迈向真实专家级金融搜索与推理评测)[04:56] 🤖 RynnVLA-001: Using Human Demonstrations to Improve Robot Manipulation(RynnVLA-001:利用人类示范提升机器人操作能力)[05:39] 🔮 AToken: A Unified Tokenizer for Vision(AToken:面向视觉的统一Tokenizer)[06:10] 🌌 WorldForge: Unlocking Emergent 3D/4D Generation in Video Diffusion Model via Training-Free Guidance(WorldForge:无需训练即可在视频扩散模型中解锁3D/4D生成的涌现能力)[06:58] 🖼 MultiEdit: Advancing Instruction-based Image Editing on Diverse and Challenging Tasks(MultiEdit:面向多样复杂任务的指令式图像编辑新突破)[07:54] 🎮 RecoWorld: Building Simulated Environments for Agentic Recommender Systems(RecoWorld:为智能推荐系统打造仿真训练沙盒)[08:28] 🎯 Unleashing the Potential of Multimodal LLMs for Zero-Shot Spatio-Temporal Video Grounding(释放多模态大模型零样本时空视频定位潜能)[09:03] 🔍 Mind the Gap: A Closer Look at Tokenization for Multiple-Choice Question Answering with LLMs(留意空格:面向LLM选择题问答的Tokenization再审视)[09:51] 🩺 EchoVLM: Dynamic Mixture-of-Experts Vision-Language Model for Universal Ultrasound Intelligence(EchoVLM:面向通用超声智能的动态混合专家视觉-语言模型)[10:34] 🛰 FSG-Net: Frequency-Spatial Synergistic Gated Network for High-Resolution Remote Sensing Change Detection(FSG-Net:频-空协同门控网络用于高分辨率遥感变化检测)【关注我们】您还可以在以下平台找到我们,获得播客内容以外更多信息小红书: AI速递
loading
Comments