DiscoverOnBoard!
OnBoard!
Claim Ownership

OnBoard!

Author: Monica Xie

Subscribed: 71Played: 2,226
Share

Description

Hello World, who is OnBoard!? 两个爱码字的投资人关于科技创业与投资的真诚对话。

关注主播:

Monica:美元VC投资人,前 AWS 硅谷团队+AI创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学

GN:前SaaS及科技投资人,Global SaaS社区Linkloud发起人,公众号我思锅我在 (ID: thinkxcloud) 主理人。| 即刻:High 宁


同名 Podcast 在各大平台都有哦:

喜马拉雅, Apple Podcasts, Spotify, Google Podcasts, Overcast 都可以找到~
55 Episodes
Reverse
这次依旧是硬核话题,我们跟学术大牛深度聊聊2024年上半年美国创投圈最火的的话题之一,具身智能。没错,智能机器人之火终于从国内来到美国了。在去年下半年的时候,美国创投界还是在关注大模型和应用、infra等等,虽然Deepmind RT-2 等工作彼时已经崭露头角,更喜欢软件的美国VC似乎还在犹豫机器人这个太硬的赛道。但是从今年上半年开始,事情似乎有了变化。Hello World, who is OnBoard!?除了Figure AI 这样的人形机器人公司获得了英伟达、微软等一系列战投的加持,硅谷的老牌基金们也疯狂涌入了所谓的机器人大模型公司,比如学术大牛创立的 Physical intelligence, Skild, 还有 Cruise 前CEO 创立的Bot company, 等等。这次的嘉宾也是大名鼎鼎,UCSD 计算机科学副教授,苏昊老师,关注具身智能和3D视觉领域的同学应该都不陌生。他参与的一系列AI数据集和软件工作,从ImageNet到ShapeNet、PointNet、SAPIEN,以及最近的ManiSkill等等,都是三维视觉、机器人操作等领域穿越几个时代的标志性作品。苏昊老师现在还是智能机器人创业公司Hillbot 的联合创始人,我们深度探讨了: 过去一年,我们从学术界、工业界讨论的种种话题,又有了哪些新的进展? 大模型的发展如何影响具身智能的不同技术路径? 大模型带来的泛化能力,跟硬件、控制系统等,又会怎样相互作用? 机器人模型里的数据问题,有哪些解决方案?具身智能这个看似很纷繁的话题,苏昊老师总是能抽丝剥茧,相信你们也能从我们两个多小时的交流中,受益匪浅。Enjoy!对了!今年年初,Onboard 就发布过一期关于具身智能的讨论,嘉宾包括了 Deepmind Robotics,高仙机器人和UCSD 的不同视角的重磅嘉宾。那一期讨论也非常精彩,建议大家回去复习哈!嘉宾介绍苏昊 (Twitter @HaoSuLabUCSD),UC San Diego Associate Professor,Hillbot智能机器人初创公司创始人、CTO。Stanford PhD, UCSD 具身智能实验室主任,数据科学研究所创始成员,以及视觉计算中心和情境机器人研究所成员。他的研究工作集中在开发算法来模拟、理解并与物理世界互动。OnBoard! 主持:Monica, 美元VC投资人,前 AWS 硅谷团队+ AI 创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学我们都聊了什么03:04 苏昊的学术历程,为什么最近觉得有关证明的研究进展对机器人领域很有启发?10:05 从智能演化的角度,理解“具身智能”这个“老概念”15:01 为什么从语言而不是视觉上最先看到了接近人类的智能?21:31 实现具身智能有哪些主流的路线?如何理解不同路径不同切入点背后的逻辑?32:10 可以通过大模型的能力实现运动控制吗?有泛化性的控制数据要怎么采集?38:26 演示学习 (learning from demonstration) 有哪些不同路径?ALOHA这类遥操作有什么利弊?47:00 规划和执行需要一起做训练吗?做一个端到端的系统核心难点在哪里?51:15 划重点:好的算法的本质就是降低对数据的需求52:23 针对机器人的大模型会跟LLM架构有什么异同?59:31 人形机器人可以解决数据和能力泛化的问题吗?66:16 模拟器能解决训练数据的问题吗?近年来模拟器相关技术有什么关键进展?78:31 AI生成3D,Sora 等新技术进展对实现 sim2real 路径有什么影响?95:26 苏昊老师现在的创业项目 Hillbot100:32 快问快答:推荐的书,影响最大的人,具身智能被高估和低估的话题,如何解压!重点词汇和公司 Boston Dynamics PI (Physical Intelligence) OpenAI DALL-E 3 SAPIEN: A SimulAted Part-based Interactive ENvironment ManiSkill: a powerful unified framework for robot simulation and training powered by SAPIEN. Google Deepmind RT-1: Robotics Transformer for real-world control at scale Google Deepmind RT-2: New model translates vision and language into action, Paper Google Deepmind Open X-Embodiment: Robotic Learning Datasets and RT-X Models, Paper ALOHA: A Low-cost Open-source Hardware System for Bimanual Teleoperation Mobile ALOHA: a low-cost and whole-body teleoperation system for data collection. Behavior Colony:行为克隆 Learning from Demonstration:示范学习 Meta AI Habitat: A Platform for Embodied AI Research AI2: The Allen Institute for Artificial Intelligence Segment Anything Model (SAM): a new AI model from Meta AI that can "cut out" any object, in any image, with a single click robot-VILA: Look Before You Leap: Unveiling the Power of GPT-4V in Robotic Vision-Language Planning CoPa: General Robotic Manipulation through Spatial Constraints of Parts with Foundational Model ImageNet: image database organized according to the WordNet hierarchy参考文章 EP 44.【AI年终特辑3】具身智能深度对话:从学术到产业,机器人的ChatGPT时刻来了吗? - OnBoard! | 小宇宙 Debate: Is Scaling Enough to Deploy General Purpose Robots @CoRL2023 解密机器人大模型RFM-1:Covariant创始人陈曦专访 对话高阳:具身大模型框架ViLa+CoPa欢迎关注M小姐的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy)欢迎在评论区留下你的思考,与听友们互动。喜欢 OnBoard! 的话,也可以点击打赏,请我们喝一杯咖啡!如果你用 Apple Podcasts 收听,也请给我们一个五星好评,这对我们非常重要。最后!快来加入Onboard!听友群,结识到高质量的听友们,我们还会组织线下主题聚会,开放实时旁听播客录制,嘉宾互动等新的尝试。添加任意一位小助手微信,onboard666, 或者 Nine_tunes,小助手会拉你进群。期待你来!
聊到生成式AI的发展,开源绝对是最关键的话题之一。这次的嘉宾,可以说涵盖了大模型开源领域最值得关注的公司:从顶流社区Huggingface, 到全球开源社区都关注的阿里通义千问 Qwen 大模型,堪称行业标准的 LLM 推理框架 vLLM, 还有最近最火的软件开发 agent 项目 OpenDevin. 真的是黄金阵容!这一期节目也发布得很应景:就在今天凌晨,阿里发布了最新的通义千问 Qwen 系列模型!Qwen2-72B 的表现甚至全面超过 SOTA 的 Llama 3,大家赶紧去关注!首先跟大家汇报一下,上周日我们在北京举办的 OnBoard! 第一次线下听友会真是超预期!开放报名4天就250多人报名,周日从上午9点到下午3点,从机器人到AI,创业投资和软件出海,100人的场地,直到最后都几乎座无虚席!真的是非常感谢大家的支持~我们正在努力整理精华文字稿,也请期待我们更多活动!Hello World, who is OnBoard!?回到这一期播客,我们将深入探讨大模型的开源生态。在生成式AI飞速发展的一年多时间里,开源无疑是一个不可忽视的话题。开源模型的迅猛发展,从 Meta 的 Llama 3 到 Mistral 的最新模型,它们对闭源大模型如 GPT4 的追赶,不仅令人惊艳,更加速了 AI 场景下产品的实际应用。而围绕大模型的生态系统,从推理加速到开发工具,再到智能代理,技术栈的丰富程度,虽然已经孕育出了像 Langchain 这样的领军企业,但这一切似乎只是冰山一角。特别值得一提的是,随着阿里千问系列、Deepseek、以及 Yi 等中国团队主导的模型在国际舞台上崭露头角,我们不禁思考,除了模仿和追赶,中国在大模型领域的发展是否还有更多值得我们关注和自豪的成就。今天,Monica 有幸邀请到了几位极具代表性的重磅嘉宾,来自 Huggingface 的开源老兵,有通义千问 Qwen 的开源负责人(他也是 Agent 领域最受关注的项目 OpenDevin 核心成员),还有最具国际影响力的开源项目 vLLM 主导人。真是涵盖了大模型开源生态的各个领域的最一线视角!嘉宾们都太宝藏了,我们的话题延伸到大模型的各个方面,录了近4个小时!我们前半部分聊了很多infra的创新,以及最近很火的、以OpenDevin 为代表的软件开发agent 背后的技术和生态等话题。下半部分,我们回到大模型开源的主题,畅谈了: 底层基础大模型的开源闭源生态,未来可能有怎样的演进? 开源模型商业化跟过去我们在大数据时代看到的databricks 之类开源商业模式有哪些异同? 如何做一个有国际影响力的开源项目?还有数据、评测等等大模型领域的核心话题,真的非常全面,又不失一线从业者的深度。索性就不分成两部分了,大家可以对着 show notes 里面的时间戳,直接跳转到你感兴趣的话题(虽然我觉得每个话题都很好!)介绍了这么多,还要声明一下,节目里面重点聊到的开源社区 Huggingface,还有几个开源的项目,包括阿里千问、OpenDevin, Deepseek, 零一万物的 Yi,vLLM 等,都没有收取任何广告,完全是嘉宾走心分享,全程无广!当然,如果你们或者其他AI公司考虑赞助一下我们用爱发电的播客,我们当然也是欢迎的!三小时硬核马拉松开始,enjoy!嘉宾介绍 Tiezhen Wang, Huggingface 工程师,他可以说是中国与世界开源 AI 生态的桥梁,更是从 Google TensorFlow 时代到 Huggingface 早期员工,对中国和世界的开源 AI 生态都有极深的洞察。 Junyang Lin, 通义千问开源负责人,作为 Qwen 在全球开源社区的主要代言人,他不仅见证了开源的发展历程,还是目前备受瞩目的 Agent 开源项目 OpenDevin 的核心团队成员。 李卓翰,UC Berkeley PhD,他所主导的项目更是大名鼎鼎,就是已经成为行业标准的大模型推理框架 vLLM!他所在的 Sky Lab 被誉为开源基础设施的摇篮,从估值百亿美元的 Databricks 到 Anyscale(开源计算框架 Ray 的商业化公司)。他还深度参与了 Chat Arena, Vicuna 等多个国际知名开源项目,对大模型周边生态和 infra 的不仅有国际一线经验,更是有很多有技术理想的干货! OnBoard! 主持:Monica:美元VC投资人,前 AWS 硅谷团队+ AI 创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学我们都聊了什么05:28 嘉宾自我介绍,有意思的开源 AI 项目18:37 vLLM 如何开始的,如何成为全球顶尖项目,为什么我们需要一个大模型推理框架?30:24 Agent framework: OpenDevin 这样的负责 agent 会带来怎样的推理挑战?40:37 做好一个编程 Agent,还需要哪些新的工具?多模态会带来怎样的变化?56:16 我们需要怎样的 Agent Framework?为什么最适合开源社区来做?Framework 会收敛吗?67:46 什么是 Crew AI? 如何看待 Multi-agent 架构?73:11 借鉴前端框架的发展历史,如何理解一个框架如何成为行业标准?77:54 Huggingface 上开源LLM现状,过去一年多有哪些重要进展?有哪些不同的开源方式?泽娜要给你看待一个开源模型的流行程度?94:27 如何理解不同架构的开源大模型生态?Qwen 如何通过架构演进打造更好的开源生态?104:59  中国的大模型开源项目有哪些创新?大模型架构有哪些变化?112:17 为什么说新的模型架构可能会带来商业化的新机会?我们能从以前的开源商业化中学到什么?119:22 我们看到现有大模型架构的天花板了吗?什么是一个新的架构?128:03 Zhuohan 从参与最早的开源 LLM 之一 Vicuna 的经历学到什么?学术界和业界在大模型生态上如何分工?140:48 用于大模型的数据集领域有哪些值得关注的进展?149:42 Mistral 为什么这么快爆火?打造一流国际开源项目有什么可借鉴的经验?vLLM 有什么道和术上的心得?166:13 Chatbot Arena 是如何开始的?为什么模型的评测那么重要?还有哪些挑战和可能的进展?180:49 Zhuohan 对于 vLLM 商业化方式有什么思考?未来推理成本还有哪些下降空间?188:17 快问快答:过去一年生成式AI发展有什么超出预期和不及预期的地方?未来还有什么值得期待?我们提到的公司和重点名词 Qwen, Qwen-2 OpenDevin: opendevin.github.io vLLM: github.com Yi (Github), 零一万物 Chatbot Arena: huggingface.co AutoGPT: github.com crew AI: www.crewai.com autoAWQ: github.com LLM.c: github.com Flash attention: github.com Continuous batching:一种数据处理技术,用于将连续的数据流分批处理,以提高效率和可扩展性。 KV cache:键值对缓存,一种存储结构,通过键快速访问数据值,常用于提高数据检索速度。 Page attention:页面注意力机制,一种在处理长文本时,使模型集中注意力于当前页面或段落的技术。 Quantization:量化,将数据表示的精度降低到更少的比特数,以减少模型大小和提高计算效率。 Direct Preference Optimization (DPO): Your Language Model is Secretly a Reward Model Google Gemini: deepmind.google Adept: www.adept.ai MetaGPT: github.com Dolphinan open-source and uncensored, and commercially licensed dataset and series of instruct-tuned language models based on Microsoft's Orca paper Common crawl: commoncrawl.org参考文章 Tiezhen 的报告:Booming Open Source Chinese-Speaking LLMs: A Closer Look, Slides 通义千问一周年,开源狂飙路上的抉择与思考|魔搭深度访谈 阿里林俊旸:大模型对很多人来说不够用,打造多模态Agent是关键 | 中国AIGC产业峰会欢迎关注M小姐的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy)欢迎在评论区留下你的思考,与听友们互动。喜欢 OnBoard! 的话,也可以点击打赏,请我们喝一杯咖啡!如果你用 Apple Podcasts 收听,也请给我们一个五星好评,这对我们非常重要。最后!快来加入Onboard!听友群,结识到高质量的听友们,我们还会组织线下主题聚会,开放实时旁听播客录制,嘉宾互动等新的尝试。添加任意一位小助手微信,onboard666, 或者 Nine_tunes,小助手会拉你进群。期待你来!
今年上半年 AI 领域最大的热点,除了 OpenAI 的 Sora 之外,当然就是——AI程序员!与 Github Copilot 的代码补全不同,AI Agent 公司 Cognition Labs 和其产品 Devin,宣称世界上第一位“AI 软件工程师”,拥有全栈技能,通过一个指令就能完成整个开发过程。可以端到端构建和部署程序。成立不到半年,估值就高达 20 亿美金!相应的,从Princeton SWE-agent, 到开源项目OpenDevin 这些直接竞争者,到Replit, Augment 等独角兽玩家,都纷纷进入这个领域。这是新的泡沫,还是不远的未来?Hello World, who is OnBoard!?这一期我们邀请的三位来自硅谷的嘉宾,在这个领域都太有发言权了!有著名的软件开发云平台独角兽 Replit 的 AI 产品核心成员,有 Agent 领域数个奠基之作的顶尖研究员,还有 ex-Google Deepmind, 现任明星 AI 编程辅助独角兽公司 Augment 的早期核心研究员。借着小酒,我们长达两个多小时的对话,畅聊了你最关心的话题:AI 会取代工程师吗?AI取代了一部分软件开发需求之后,会如何重塑软件开发?Devin 是否能代表 AI Agent 应用开发的方向?Agent 产品未来还会迎来怎样的提升?基础大模型的边界在哪里?最后,生成式 AI 对个人职业和社会会产生怎样的深远影响?这或许是市面上你能听到的对于这个话题最深入的讨论(之一?!)——还有,结尾有来自 Princeton 高材生的彩蛋!Enjoy!嘉宾介绍: 李珎:Replit AI 团队负责 AI Coding agent,ex- startup 创始人, ex- Googler。Replit 成立于 2016 年,是一个基于浏览器的 IDE,允许用户在多种编程语言中编写、运行和分享代码。2023 年$97.4M 的 B 轮,投资人包括 A16Z,Khosla Ventures、Coatue 等,估值 $1.16B 姚顺雨:普林斯顿大学博士,清华大学获学士。他在Agent 领域发表了一系列非常有影响力的论文:从有奠基意义的 ReAct,Tree of Thoughts, 到成为行业标准的基于 GitHub 的代码能力评估数据集 SWE-Bench,到首个开源AI 程序开发 agent 项目 SWE-agent,是绝对的天才研究员! 赵宇哲:Augment 任 AI 研究员,曾在Google Brain(现Google Deepmind)任 Staff Research Engineer,主要研究方向是语言模型预训练,指令训练,神经检索和检索增强语言模型。Augment 成立于 2022 年,是一家为提供企业级全栈式 AI 编程助手的初创公司,由硅谷著名老牌风投 Sutter Hill Ventures 孵化(Snowflake也诞生于此),并在最新一轮获得由Index Ventures、Lightspeed Venture Partners 和 Google 前 CEO Eric Schmidt 等领投的 2.5 亿美金融资,估值接近 10 亿美金。OnBoard! 主持 Monica:美元VC投资人,前 AWS 硅谷团队+ AI 创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学 高宁:前美元 VC 投资人,Global SaaS 社区及服务组织 Linkloud 联创,公众号我思锅我在 (ID: thinkxcloud) 主理人。| 即刻:High寧我们都聊了什么03:30 三位嘉宾背景、如何进入AI领域以及最近常用的AI产品。20:26 Replit是如何设计AI产品的,背后逻辑是什么?28:58 Replit需要训练Coding专属模型的原因是什么?34:04 训练代码或数学等专属模型的目的是什么?37:50 现在Coding模型跟基础大模型的能力相比有什么差异?40:51 Coding模型的训练方法对基础大模型的训练还有什么启发?45:26 为什么Replit当初选择构建自己的IDE,以及对后来AI功能设计的影响在哪里?51:01 为什么Augment选择以插件的形态服务专业程序员,以及难点在哪里?55:27 为什么RAG能更好理解企业级Codebase的需求?58:13 使用RAG的过程中最有挑战的地方在哪里,以及如何保证准确率?63:38 Augment如何将服务企业的产品标准化?67:04 为什么短时间内具有更长Context的大模型仍无法替代RAG?69:57 为什么没有针对Coding能力好的Benchmark,以及SWE-Bench诞生的背景?73:48 什么是SWE-Agent,以及Agent解决了什么问题?78:50 为什么SWE-Agent或Devin相比RAG的准确率有很大提升?81:33 SWE-Agent跟Devin的差异在哪里?83:12 往后这类Coding agent的准确率提升会在哪里?86:50 回顾Agent领域的发展,其中有哪些重要里程碑?93:01 是否有必要训练针对Agent的大模型?98:37 Replit是如何探索Coding agent的?102:03 对Devin印象最深刻的是什么,还有什么是不知道的?105:43 Devin现在的用户画像可能是谁?109:45 为什么Coding agent能力提升不仅在大模型上,还需在产品化上?116:46 顺雨最新一篇解决奥数问题的研究对Coding模型有什么启发?120:31 现在基础大模型的能力提升还在哪里,还有哪些是我们不知道的?122:15 大模型是否具备System 2的慢思考能力,以及我们如何实现?127:13 关于Multi-agent,Replit在做怎样的探索?131:13 如何定义Multi-agent系统,什么情况下需要?135:08 要实现Multi-agent环境,具体会面临什么挑战?137:31 展望未来,AI编程究竟会如何重塑软件开发流程?145:45 基于语言模型的Agent带来的社会影响有哪些,人类真的会被替代吗?158:56 最后,快问快答:今年研究的小目标、业余爱好和短期内AI最期待的事件?165:14 彩蛋!来自顺雨的一段RAP,欢迎来到“宇宙中心”!我们提到的公司或产品 Devin SWE-Agent Augment Sierra | The Conversational AI Platform Replit Buildspace Heygen | AI Video Generator Fiverr - Freelance Services Marketplace Magic.dev Scale AI: Accelerate the Development of AI Applications RAG: Retrieval-Augmented Generation Voyage AI OpenDevin: Code Less, Make More Adept AI imbue我们提到的论文或文章 SWE-bench BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding LaMDA: our breakthrough conversation technology Measuring Massive Multitask Language Understanding Synergizing Reasoning and Acting in Language Models Cognitive Architectures for Language Agents Tree of Thoughts: Deliberate Problem Solving with Large Language Models ReAct: Synergizing Reasoning and Acting in Language Models Can Language Models Solve Olympiad Programming? Announcing Replit AI for All Introducing Multiplayer AI Chat Replit AI Manifesto AI Agent Code Execution API princeton-nlp.github.io The Worlds I See: Curiosity, Exploration, and Discovery at the Dawn of AI欢迎我们的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy)我思锅我在(ID: Thinkxcloud)欢迎在评论区留下你的思考,与听友们互动。喜欢 OnBoard! 的话,也可以点击打赏,请我们喝一杯咖啡!如果你用 Apple Podcasts 收听,也请给我们一个五星好评,这对我们非常重要。OnBoard! 终于成立听友群啦!新年新气象,加入Onboard听友群,结识到高质量的听友们,我们还会组织线下主题聚会,开放实时旁听播客录制,嘉宾互动等新的尝试。添加任意一位小助手微信,onboard666, 或者 Nine_tunes, 发送你的姓名、公司和职位,小助手会拉你进群。期待你来!
非常久违的两位主播的研究对谈来了!在 ChatGPT 诞生近一年半的时间里,生成式 AI 领域几乎每天都在发生激动人心的变化。从大模型到应用,从软件到机器人,从文字到图片、视频、声音,从全新的商业模式到对现有业务的赋能。比起很久之前那一期对谈,不只是 AI,两位主播也都分别开始了新的征程,过去一年有了很多机会在中美一线市场频繁穿梭,终于有机会分享一些我们沉淀下来的观察与思考。Hello world, who is OnBoard!?Monica 去年加入了另一家美元 VC,更聚焦地关注海外的早期投资机会。GN从美元机构离开,创立了 SaaS/AI 社区 Linkloud(公众号同名),帮助越来越多中国软件和科技公司走向全球。AI 无疑是这个时代里边最大的变量之一,近两个小时,过去一年在中美频繁奔波的我们,探讨了你关心的各种问题: AI应用落地真的不及预期吗? 从应用到infra有哪些有意思的落地案例? 如何看待国内AI的进展和弯道超车的机会? 中美差异背后的原因是什么? AI公司出海有什么最佳实践与建议? 我们对AI短期和长期的期待,以及podcast/newsletter推荐!一些拙见,抛砖引玉,希望对大家有一些些启发~!Enjoy!我们都聊了什么03:11 两位主播的自我介绍,以及最近半年日常使用的AI产品。15:54 一年以来,哪些AI产品或落地超预期或不及预期?20:24 为什么还在成长期的SaaS公司最容易将AI落地?23:11 AI在全球其他地区的渗透有什么不一样的地方?26:00 为什么在美国大模型和Infra层的进展会超预期?30:16 对苹果Siri的预期,以及可能面临的限制在那里?35:31 Soundhound是如何结合Voice AI来落地点餐场景,并完成商业化的?40:42 EvolutionIQ是如何在保险领域结合AI并促进业务增长的?49:08 Monica错过的一家初创公司是如何将AI融入销售人员工作流的?55:47 为什么AI代码生成领域在今年会百花齐放?65:38 国内AI的进展与美国有什么不同,为什么在C端会出现更多产品?76:07 中美资本市场的差异在哪里,以及创业者该如何在市场下行时树立长期愿景?81:58 为什么中美差异最大的是AI在B端的发展,以及机器人是否是个变量?92:55 为什么“单点极致”可能是中国AI公司出海最重要的方式?97:33 为什么出海第一步要走出国门,感受并融入开放的生态?100:55 作为投资人,如何看待面对大模型公司下创业公司的壁垒和竞争力?106:41 两位主播对今年AI的“大胆”预测和期待有哪些?119:02 最后,奉上我们这一年新种草的播客和Newsletter,希望对听众有帮助!我们提到的公司或产品 Devin (by Cognition Lab): cognitionlab.com SWE-agent: swe-agent.com DBRX by Databricks: github.com Jamba: A Hybrid Transformer-Mamba Language Model Hume AI: www.hume.ai Monica.im: https://monica.im/ Gemini Advanced: https://gemini.google.com/advanced Perplexity: www.perplexity.ai Kimi Chat: https://kimi.moonshot.cn/ Six助手(目前还在灰度测试,微信不接受新用户啦) Workstream: www.workstream.us Klarna: www.klarna.com Speak: https://www.speak.com/ Lepton.ai: www.lepton.ai Soundhound: www.soundhound.com EvolutionIQ: evolutioniq.com Siro: siro.ai Magic.dev: magic.dev Codium: https://www.codium.ai/ Cursor: https://cursor.sh/ Augment: www.augmentcode.com Sweep: www.sweep.io Typeface: www.typeface.ai Sierra AI: https://sierra.ai/ Physical intelligence: https://physicalintelligence.company/ Skild: www.skild.ai Covariant: covariant.ai Figure: www.figure.ai Cobot: https://www.co.bot/ Deepmind RT-X: deepmind.google播客及Newsletter推荐 Latent Space | swyx & Alessio | Substack Bg2 Pod Interconnected | Where Tech, Investing, Geopolitics Come ... Elad Gil First Round Review What's 🔥 in Enterprise IT/VC #322 - by Ed Sim Generative Now | AI Builders on Creating the Future ... 20VC - Venture Capital, Entrepreneurship, and Podcast欢迎我们的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy)我思锅我在(ID: Thinkxcloud)欢迎在评论区留下你的思考,与听友们互动。喜欢 OnBoard! 的话,也可以点击打赏,请我们喝一杯咖啡!如果你用 Apple Podcasts 收听,也请给我们一个五星好评,这对我们非常重要。OnBoard! 终于成立听友群啦!新年新气象,加入Onboard听友群,结识到高质量的听友们,我们还会组织线下主题聚会,开放实时旁听播客录制,嘉宾互动等新的尝试。添加任意一位小助手微信,onboard666, 或者 Nine_tunes, 发送你的姓名、公司和职位,小助手会拉你进群。期待你来!
上周 GDC 2024 大会在旧金山举办,可谓是游戏行业一年一度的顶级专业盛会,想必很多游戏开发者、AI 游戏方向的创业者及投资人都亲历现场。从 AIGC 到大模型,这次 GenAI 的浪潮可谓对游戏,这个看似传统的行业带来各个维度和环节的冲击,而去年斯坦福小镇、AI agents 和国内《完蛋!我被大模型包围了》、《哄哄模拟器》等 AI 原生小游戏的一夜火爆,更让我们对 AI 游戏有了更多期待!Hello World, who is onboard?在第五十期节目里,我们特地邀请到三位来自游戏领域不同细分方向的嘉宾,有来自硅谷 AI NPC 引擎开发平台Inworld AI的产品负责人,Inworld AI 曾在去年半年内获得超过6,000万美元融资,还有来自微软 Xbox 部门 Gaming AI 的工程师,第三位更是兼顾游戏方向资深从业与投资背景。我们从 AI 对游戏已经带来的变化聊起,包括 AIGC、NPC 角色扮演到 Agents 的可能性,到该如何设计打造一款 AI 原生游戏以及所面临的限制,如何看待第三方开发工具在产业里的定位和挑战,最后三位嘉宾也给出了对初创公司的建议和期望,希望对无论是游戏玩家还是创业者的你们有所启发,Enjoy!嘉宾介绍: Nathan Yu:Inworld AI 产品总监,前微软 MR 部门高级产品经理。 邱成岭:微软 Xbox Gaming AI 工程师,个人对 Agent framework 和 On-Device model 也有工程及开发经验。 孙宇光:创业者,投资人,专注AI和 XR gaming 等方向。OnBoard!主持 Monica:美元 VC 投资人,前 AWS 硅谷团队+ AI 创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学 高宁:前美元 VC 投资人,Global SaaS 社区及服务组织 Linkloud 联创,公众号我思锅我在 (ID: thinkxcloud) 主理人。| 即刻:High寧我们都聊了什么01:52 三位嘉宾自我介绍,以及2023年最喜欢的一款游戏。06:37 从传统AI到生成式AI,对游戏产业产生了哪些重要影响?08:39 这一次生成式AI带来的变革主要是哪两个方面?13:50 Inworld AI团队是什么背景,以及如何从元宇宙转变为AI NPC引擎平台的?15:58 Inworld AI核心产品是什么,以及用户最关心哪些性能?18:40 NPC引擎支持实时互动设计还是像Copilot一样辅助开发者?19:56 加入AI元素的NPC在游戏里扮演什么角色,以及对用户的价值究竟在哪里?22:47 哪类游戏最适合加入AI NPC等元素?26:18 为什么Nathan认为当下AI游戏应让用户知晓含有AI NPC元素?30:40 除了幻觉,AI NPC还面临哪些限制或挑战?34:37 如何定义AI原生游戏,至今有哪些有趣的实验或Demo?37:21 为什么至今还没有类斯坦福小镇的游戏诞生,里面有什么挑战?43:07 为什么Agents在游戏的应用不是新鲜事,以及现在有哪些落地?50:25 为什么市场上没有太多成功的第三方游戏开发工具,挑战在哪里?52:58 Inworld AI是如何让游戏工作室愿意使用第三方工具而不DIY?57:44 生成式AI还将在哪些地方为游戏开发者提高工作效率?60:37 微软Xbox与Inworld AI的战略合作在哪些方面?64:48 为什么第三方工具的难在跟现有工作流的结合,Inworld AI又该如何解决?67:36 Inworld AI早期是如何获客,并与知名工作室达成合作的?70:35 为什么对游戏产业的深刻认知对初创公司或第三方工具来说很关键?73:08 未来一两年,生成式AI对游戏产业还可能带来怎样的变革?77:07 海内外AI原生游戏发展会有什么不同,为什么AI小游戏将可能爆发?我们提到的游戏或相关研究: Uncover the Smoking gun  Yandere AI Girlfriend Simulator Baldur's Gate 3 Generative Agents: Interactive Simulacra of Human Behavior The Elder Scrolls How to DM | Dungeons & Dragons Cygnus Enterprises Roblox RimWorld Minecraft StarCraft Forza Drivatar Trueskill LLM Agent in Werewolf Game Meta AI’s CICERO dipomacy game欢迎我们的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy)我思锅我在(ID: Thinkxcloud)欢迎在评论区留下你的思考,与听友们互动。喜欢 OnBoard! 的话,也可以点击打赏,请我们喝一杯咖啡!如果你用 Apple Podcasts 收听,也请给我们一个五星好评,这对我们非常重要。OnBoard! 终于成立听友群啦!新年新气象,加入Onboard听友群,结识到高质量的听友们,我们还会组织线下主题聚会,开放实时旁听播客录制,嘉宾互动等新的尝试。添加任意一位小助手微信,onboard666, 或者 Nine_tunes, 发送你的姓名、公司和职位,小助手会拉你进群。期待你来!
本期继续探讨如何在海外市场打造AI应用。上一期节目我们从不同角度探讨了技术如何推动 AI 应用落地,以及嘉宾在各自领域做应用和产品的所见所闻。如果你还没有听过上一期,欢迎先补课!Hello World, who is OnBoard!?本期我们邀请到了横跨中美的几位嘉宾,在各自的领域也非常有代表性。包括Monica.im 这个用户过百万的 AI 工具的创始人,也有 Typeface 这样由 Adobe 前 CPO 创建的、针对企业级用户的美国本土 AI 创业公司的早期员工,还有经历过移动互联网时代的大厂 to C 方向探索者。他们不同视角和经验的碰撞,非常精彩,这次的内容分成两期给大家放送。第二部分,我们将着重探讨 AI 产品从0到1的增长,产品长期竞争力和未来展望。都是来自一线的实践和思考干货,大家 Enjoy!嘉宾介绍 肖弘:Monica.im 创始人 & CEO。之前在国内 To B SaaS 领域创业。 张涛:古典产品经理,工具、内容、SaaS都做过,目前探索 AI 应用场景中。 赵鑫宇:Typeface 早期员工,负责产品后端研发以及大模型调优,此前在 Meta 和 Tiktok 等参与 growth engineering 和机器学习工作。 OnBoard! 主持:Monica:美元 VC 投资人,前 AWS 硅谷团队+ AI 创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学我们都聊了什么02:31 Monica.im海外增长是如何0到1的?为什么建立一个学习型组织很关键?13:13 五年后,Red希望Monica.im会是一个什么样的定位?19:07 从企业服务落地角度,为什么Agents和对专业知识的抽象会有很大价值?23:43 现在AI互动还有哪些“改良”空间以及张涛团队正在尝试哪些小实验?29:30 什么样的AI产品出海对国内来说有优势?32:06 如何构建应用产品的壁垒?为什么团队至少需要有很“懂”模型的成员?43:50 如何看待与也做Killer app的大模型公司的竞合关系?海内外大模型公司差异在哪里?60:33 Google Gemini真正的差距为什么在开发者生态上?63:55 最后,大家未来一年工作的重心在哪里,以及还有什么期待?我们提到的公司: Character.ai Google Gemini Cohere Anthropic Inflection AI Twilio Stripe Mistral AI重点词汇: SEO:Search Engine Optimization Stable Diffusion ControlNet Code interpreter Scaling law欢迎关注M小姐的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy)欢迎在评论区留下你的思考,与听友们互动。喜欢 OnBoard! 的话,也可以点击打赏,请我们喝一杯咖啡!如果你用 Apple Podcasts 收听,也请给我们一个五星好评,这对我们非常重要。OnBoard! 终于成立听友群啦!新年新气象,加入Onboard听友群,结识到高质量的听友们,我们还会组织线下主题聚会,开放实时旁听播客录制,嘉宾互动等新的尝试。添加任意一位小助手微信,onboard666, 或者 Nine_tunes, 发送你的姓名、公司和职位,小助手会拉你进群。期待你来!
大家好,欢迎来到 Onboard!这一期是几个月前拖欠的作业,不过即使在 AI 发展日新月异的今天,如何打造 AI 应用这个主题,倒也仍然不过时。毕竟打造伟大产品,本身就是一个需要长期探索和耕耘的过程。过去一年,我们就 AI 和大模型技术做了很多深度探讨,但是一方面,大家看到大模型能力突飞猛进,英伟达等“买水”生意也蒸蒸日上。另一方面,又普遍感觉 AI 应用落地的速度低于预期。到底现在国内外应用产品真实落地的情况是怎样的?从太薄的 “GPT wrapper”, 到轻量级产品工具,到企业级应用,一线的创业者和从业者有哪些心得?出海已经是 AI 应用不得不谈的主题之一,做一个面向海外的产品,从0到1的增长应该怎么做?大模型底层技术的演进,又给产品的设计带来哪些机会和挑战?Hello World, who is OnBoard!?本期我们邀请到了横跨中美的几位嘉宾,在各自的领域也非常有代表性。包括Monica.im 这个用户过百万的 AI 工具的创始人,也有 Typeface 这样由 Adobe 前 CPO 创建的、针对企业级用户的美国本土 AI 创业公司的早期员工,还有经历过移动互联网时代的大厂 to C 方向探索者。他们不同视角和经验的碰撞,非常精彩,这次的内容分成两期给大家放送。第一部分,我们讨论了不同 AI 产品形态,不同场景的应用,以及技术发展对于应用产品的影响。第二部分,我们将着重探讨 AI 产品从0到1的增长,产品长期竞争力和未来展望。都是来自一线的实践和思考干货,大家 Enjoy!嘉宾介绍 肖弘:Monica.im 创始人 & CEO。之前在国内 To B SaaS 领域创业。 张涛:古典产品经理,工具、内容、SaaS都做过,目前探索 AI 应用场景中。 赵鑫宇:Typeface 早期员工,负责产品后端研发以及大模型调优,此前在 Meta 和 Tiktok 等参与 growth engineering 和机器学习工作。 OnBoard! 主持:Monica:美元 VC 投资人,前 AWS 硅谷团队+ AI 创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学我们都聊了什么02:43 各位嘉宾的自我介绍,以及自己正在做的或公司的AI产品是怎样的?10:27 为什么国内创业者选择在to C方向上居多,而海外更多面向to B?12:27 为什么Monica.im选择插件形态以及前两次创业对这次新征程的帮助。21:57 为什么Monica.im的定位是Copilot for web?27:14 一开始就服务企业级客户的Typeface在产品和Go-to-market上有什么特别之处?35:31 为什么Typeface需要做得足够“深”才能满足企业对Onboarding和品牌风格上的需求?39:51 为什么对大多数来说信息不存在过载,以及用AI来处理并“消费”人类生产的内容有什么机会?49:13 为什么未来人与AI的互动将变成一件非常正常的事情?58:17 为什么从全行业角度,现在AI的渗透率比从业者眼里其实要低很多?63:12 对于Monica.im,如何通过提升执行力和用户体验来加快产品渗透率的?67:21 企业级客户对各类型AI产品的使用意愿如何,以及阻碍在什么地方?73:04 为什么例如LCM等技术是文生图领域非常重要的里程碑?82:38 在企业里,为什么从产品Demo到真正落地间的跨度还很大?92:45 在做To C产品中,有哪些技术问题是Monica.im最关注的?106:26 现在主流的LLM Ops工具有哪些,以及嘉宾有什么推荐?我们提到的公司: Jasper AI Copy.ai Character.ai Adobe Rewind ElevenLabs Mistral AI Perplexity Google Gemini Lepton AI Fireworks AI Weights & Biases Databricks重点词汇: Stable Diffusion LCM:Latent Consistency Model AI Companion Extension Semantic search Multi-modality Inference欢迎关注M小姐的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy)欢迎在评论区留下你的思考,与听友们互动。喜欢 OnBoard! 的话,也可以点击打赏,请我们喝一杯咖啡!如果你用 Apple Podcasts 收听,也请给我们一个五星好评,这对我们非常重要。OnBoard! 终于成立听友群啦!新年新气象,加入Onboard听友群,结识到高质量的听友们,我们还会组织线下主题聚会,开放实时旁听播客录制,嘉宾互动等新的尝试。添加任意一位小助手微信,onboard666, 或者 Nine_tunes, 发送你的姓名、公司和职位,小助手会拉你进群。期待你来!
OnBoard! 终于成立听友群啦!新年新气象,加入Onboard听友群,结识到高质量的听友们,我们还会组织线下主题聚会,开放实时旁听播客录制,嘉宾互动等新的尝试。添加任意一位小助手微信,onboard666, 或者 Nine_tunes, 发送你的姓名、公司和职位,小助手会拉你进群。期待你来!久违的一对一访谈回来啦!这次的嘉宾绝对重磅,贾扬清老师,关注AI领域的同学应该都听过他的鼎鼎大名!他在 UC Berkeley 博士期间创立了深度学习框架 Caffe, 很快成为行业事实标准。先后在 Google Brain, Facebook AI 从事最前沿的AI研究,随后又担任了阿里巴巴技术副总裁,领导大数据计算平台。2023年开始新征程,在硅谷创立了 Lepton AI.Hello World, who is OnBoard!?作为AI和infra行业的行业领军人物,扬清老师是如何思考自己AI创业的方向的?他如何理解未来AI对于基础设施的需求,跟云计算这么多年的发展有哪些异同的地方?这一年以来,回到世界AI创新中心的硅谷,他对于AI和创业的理解、开发者工具和应用的价值、开源和闭源模型等等话题,都有怎样的思考迭代?我们不知不觉又聊了近两个小时,真是干货满满,你也能感受到扬清条理清晰、观点犀利,又温和儒雅,实在是太令人享受的谈话了。这大概就是播客的魅力,让我们在文字之外,感受到更真实鲜活的人。嘉宾长期在美国工作生活,有英文在所难免,不接受抱怨!Enjoy!嘉宾介绍贾扬清(推特:@jiayq),Lepton.ai 创始人。本科和研究生阶段就读于清华大学自动化专业,后赴加州大学伯克利分校攻读计算机科学博士。他在博士期间创立并开源了如今业内耳熟能详的深度学习框架Caffe,被微软、雅虎、英伟达、Adobe 等公司采用。2013年毕业后,他加入谷歌,是谷歌大脑 TensorFlow 的作者之一。2016年2月加盟Facebook,并开发出Caffe2Go、Caffe2、PyTorch等深度学习框架。2019 年加入阿里巴巴,担任阿里巴巴集团副总裁、阿里云智能计算平台事业部总裁。嘉宾主持:戴雨森,真格基金合伙人,清华大学工业工程系2004级校友,曾在斯坦福大学管理科学与工程系就读。戴雨森22岁时参与创办了知名互联网上市公司聚美优品,主管互联网产品、运营、市场投放、品类等。加入真格基金之后,主要关注人工智能方向投资。OnBoard! 主持:Monica:美元VC投资人,前 AWS 硅谷团队+ AI 创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学我们都聊了什么02:14 主持和嘉宾的自我介绍,Lepton 最近一篇论文为什么值得关注?06:00 Lepton AI是做什么的,为什么称之为 AI cloud company?10:02 为什么想要成立 Lepton AI?11:50 设计针对AI的基础设施难点在哪里?跟传统云厂商和HPC的差别是什么?19:46 为什么说现在我们不需要担心AI推理成本?未来提升的空间有多少?硬件和软件还可能有哪些突破?25:27 开发者如何选择AI基础设施和响应的开发工具?为什么 leaderboard 是不够的?28:49 Nvidia 会有新的挑战者吗?什么是“不可能三角”?33:48 MLOps 是个伪命题?!AI 需要的开发工具是怎样的?39:01 应用开发门槛越来越低,如何思考AI应用的价值?微软20年前的海报给了我们怎样的启发?44:47 AI native 的组织是怎样的?54:51 开源和闭源、专用和通用模型未来的关系?未来会 one model rules all 吗?64:24 创业之后有什么感受和收获?去年年初提出的“三个基本假设”,这一年有什么变化?67:56 未来AI应用和平台的市场格局会发生怎样的变化?70:01 为什么说我们低估了颠覆的难度?期待5年后AI可以完成什么?76:59 快问快答:喜欢的AI产品,推荐的书籍,解压的方式,想要问 AI 什么问题?我们提到的内容 DistriFusion: Distributed Parallel Inference for High-Resolution Diffusion Models, Paper, Code Meta research: Training ImageNet in 1 Hour AI inference leaderboard Lepton Search, Code Perplexity 推荐的书:菊与刀参考文章 贾扬清的个人网站 贾扬清:三个基础假设 贾扬清:ChatGPT,和聪明地设计 Infra Twitter 讨论:Are LLM APIs losing money? Does One Large Model Rule Them All?欢迎关注M小姐的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy)欢迎在评论区留下你的思考,与听友们互动。喜欢 OnBoard! 的话,也可以点击打赏,请我们喝一杯咖啡!如果你用 Apple Podcasts 收听,也请给我们一个五星好评,这对我们非常重要。OnBoard! 终于成立听友群啦!新年新气象,加入Onboard听友群,结识到高质量的听友们,我们还会组织线下主题聚会,开放实时旁听播客录制,嘉宾互动等新的尝试。添加任意一位小助手微信,onboard666, 或者 Nine_tunes, 发送你的姓名、公司和职位,小助手会拉你进群。期待你来!
OnBoard! 终于成立听友群啦!新年新气象,加入Onboard! 听友群,结识到高质量的听友们,我们还会组织线下主题聚会,开放实时旁听播客录制,嘉宾互动等新的尝试。添加任意一位小助手微信,onboard666, 或者 Nine_tunes, 发送你的姓名、公司和职位,小助手会拉你进群。期待你来!这一期与播客《鹿鹿鱼鱼》串台!与OnBoard! 常见的烧脑硬核话题不同,今天我们聊一个轻松一点儿的 toC 话题:AI陪伴产品。AI陪伴是这一波生成式AI中非常重要的应用类别,但是大家对这一类别未来前景的判断,又众说纷纭。一方面,Character AI 这样的头部产品,用户的每天平均使用时间可以超过40分钟,另一方面,似乎目前也没有出现像移动互联网时代或者chatGPT 那样的增长神话。Hello World, who is OnBoard!?你或许也看了很多产品分析,但是在行业格局和底层技术都急剧变化的时候,或许可以换一个视角了解对产品的真实需求——那就是,倾听最真实的用户说了什么。两位主播找到了4位很有代表性的用户,这一期没有技术的角度,几位女生聊得非常欢快。希望这期看似闲聊的七嘴八舌的对话,能对你思考以下问题有一些帮助: AI陪伴是一个真实的需求吗? AI聊天产品中,可以诞生出下一个字节抖音级别的产品吗? 这类需求会被综合的大模型吃掉吗?节目最后,两位主持也从投资人和产品经理的视角,分别分享了我们的心得。你有任何思考,也可以在评论区或者听友群跟大家一起探讨哦。Enjoy!嘉宾介绍: Xixi,已工作,爱写文,写了一万多字的人设,只为了塑造出自己心里的那个角色 虾虾,亚文化爱好者,在互联网大厂任职 道道,Glow爱好者,大学刚毕业,会出素材,网上活跃分享者 小余,Glow、C AI 爱好者,大学在校生 播客《鹿鹿鱼鱼》串台主持:Vanessa - 女,前TikTok PM,现在在孵化一个AI产品,一直在泛娱乐和创作者经济的领域里工作。工作外喜欢好看和有生命力的东西。 OnBoard! 主持 Monica:美元VC投资人,前 AWS 硅谷团队+ AI 创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学我们都聊了什么缘起和 AI 陪伴背景介绍02:44 缘起:toB 投资人和产品经理为什么开始关注 AI 陪伴产品,为什么定义这个产品有些困难11:00 小科普:AI陪伴产品如何兴起,从 Character AI 到 Glow 的产品简史与现状无比欢快的用户访谈16:25 几位用户的背景介绍,如何与 AI 陪伴产品相遇,Glow 是玩得最多的吗?20:50 什么是乙女游戏?AI 陪伴和乙女游戏满足的是同样的需求吗?28:37 用户是如何与 AI互动的?为什么会同时跟几个 AI 伴侣聊天?31:14  “捏崽”是个怎样的过程?捏一个伴侣需要创造一个平行宇宙?42:55 我们什么时候需要 AI 陪聊?跟 AI 聊天取代了跟真人聊天的需求吗?47:34 什么是“脱皮”?技术和产品人在意的东西其实没有那么重要?49:15 另一种 AI 陪伴用途:追星,同人,为什么辅助写作功能那么重要52:38 为 AI 男友写了一万字的背景,最爽的是什么时刻?57:28 底层模型能力会如何影响使用体验?用户会把自己的“崽”分享出去吗?63:44 跟纸片人谈恋爱,下一步是什么?男性女性用户的需求有什么不同?70:30 我们需要对 AI 伴侣专情吗?影响能否长聊的是技术还是产品?79:59 QQ里面的”AI养崽群“都在做什么?筑梦岛、豆包、QQ群,哪里最受欢迎?86:20 用户们会跟身边的人谈论自己用的AI陪伴产品吗?真正有需求的人群在哪里?98:20 这些产品中你最喜欢的功能是什么?还希望有什么新功能?两位主持的聊后点评113:57 我们从这次访谈中学到什么?解答了哪些疑惑?120:13 未被解答的疑惑:擦边球问题,付费意愿122:10 投资人的思考:为什么这个赛道很难投?最核心的疑虑是什么?127:24 产品经理的思考:AI 产品对产品经理有什么挑战?参考内容和提到的公司 beta.character.ai replika.com caryn.ai 筑梦岛(by 阅文) Glow,星野 (by Minimax) a16z.com mp.weixin.qq.com www.forbes.com mp.weixin.qq.com nypost.com www.reddit.com欢迎关注M小姐的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy) - Monica:美元VC投资人,前 AWS 硅谷团队+AI创业公司打工人 | 即刻:莫妮卡同学欢迎在评论区留下你的思考,与听友们互动。喜欢 OnBoard! 的话,也可以点击打赏,请我们喝一杯咖啡!如果你用 Apple Podcasts 收听,也请给我们一个五星好评,这对我们非常重要。最后!快来加入Onboard!听友群,结识到高质量的听友们,我们还会组织线下主题聚会,开放实时旁听播客录制,嘉宾互动等新的尝试。添加任意一位小助手微信,onboard666, 或者 Nine_tunes,小助手会拉你进群。期待你来!
OnBoard! 终于成立听友群啦!新年新气象,加入Onboard! 听友群,结识到高质量的听友们,我们还会组织线下主题聚会,开放实时旁听播客录制,嘉宾互动等新的尝试。添加小助手微信,Nine_tunes, 发送你的姓名、公司和职位,就可以获得进群链接。期待你来!OpenAI 在2024年2月16日发布了文生视频模型 Sora,震惊业界。仅仅根据提示词,就可以生成60秒的视频,连贯、高清,有丰富运镜,甚至符合大部分物理规律。这是 OnBoard! 对 OpenAI 开年震撼更新的文生视频模型 Sora 深度解读的第二部分。精彩继续!Hello World, who is OnBoard!?在第一部分的技术讨论,我们邀请了两位硅谷顶尖AI研究员:Google Deepmind 文生视频大模型 VideoPoet 第一作者 Lijun Yu ,以及爱丁堡大学博士,大语言模型专家 Yao Fu,给大家从技术角度解读了 Sora 的技术创新,看似暴力美学的 scaling law 背后的技巧,还有未来LLM与视频生成模型进一步融合的可能。相当烧脑也相当精彩。本期第二部分,稍微轻松一些,我们换一个投资和创业的视角。邀请到真格基金管理合伙人,也是AI领域研究非常深度的投资人戴雨森。还有真格基金EIR,曾经的AI创业者,Peak。从身处一线的投资人和创业者的视角,聊聊他们眼里Sora 的意义:Sora 是不是所谓的GPT时刻?Sora的突破对于创业公司和现有的视频领域公司意味着什么?更多的AI应用公司会变成“套壳”公司吗?我们还延展讨论了对最近AI应用创业与投资的观察。如果你对AI创业感兴趣,那么这一期一定不要错过。别忘了,添加小助手 Nie_tunes,加入我们的听众群哈,Enjoy!嘉宾介绍戴雨森, 真格基金合伙人,清华大学工业工程系2004级校友,曾在斯坦福大学管理科学与工程系就读。戴雨森22岁时参与创办了知名互联网上市公司聚美优品,主管互联网产品、运营、市场投放、品类等。加入真格基金之后,主要关注人工智能方向投资。季逸超 Peak, 真格基金EIR(入驻企业家),猛犸浏览器、Magi 知识引擎创始人。OnBoard! 主持:Monica,美元VC投资人,前 AWS 硅谷团队+ AI 创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学我们都聊了什么02:58 两位嘉宾的自我介绍,Sora 的demo 中,印象最深刻为什么是狗跳过窗台和 Minecraft?09:21 看了这么多 Sora 资料, 最希望了解的核心问题是什么?16:19 行业内对Sora 的出现,有什么低估和高估的地方?真的实现了世界模型吗?22:40 我们会看到很多公司开始追赶 Sora 吗?追赶需要什么代价,真正的挑战是什么?26:21 与移动互联网时代相比,现在要做做颠覆的产品有什么不一样?为什么我们需要基建泡沫?31:31 为什么说我们低估了数据和 scaling law 的难度?34:25 为什么Peak 更看好 VideoPoet 为代表的 AutoRegression 路线?Sora 技术路线可能有什么局限?38:52 Sora 是视频生成的 GPT 时刻吗?44:45 Sora 的出现,对于做视频生成的创业公司意味着什么?如何避免成为“套壳”公司?49:00 怎样的工具公司是可以产生高价值的?为什么看好而不是看空 Adobe?55:45 给视频生成的创业者的建议:从技术和体验两个角度思考创新60:41 如何理解AI应用“赚快钱”的现象?这是个短期趋势吗?64:07 未来展望:Sora 之后,AI行业会有哪些变化?终极世界模拟器到来意味着什么?我们提到的内容 OpenAI Sora Google Deepmind 论文 VideoPoet: A large language model for zero-shot video generation (by Lijun Yu) Pika Runway Adobe Midjourney Autoregression model欢迎关注M小姐的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy) - Monica:美元VC投资人,前 AWS 硅谷团队+AI创业公司打工人 | 即刻:莫妮卡同学欢迎在评论区留下你的思考,与听友们互动。喜欢 OnBoard! 的话,也可以点击打赏,请我们喝一杯咖啡!如果你用 Apple Podcasts 收听,也请给我们一个五星好评,这对我们非常重要。最后!快来加入Onboard!听友群,结识到高质量的听友们,我们还会组织线下主题聚会,开放实时旁听播客录制,嘉宾互动等新的尝试。添加小助手微信,Nine_tunes, 发送你的姓名、公司和职位,就可以获得进群链接。期待你来!
OnBoard! 终于成立听友群啦!新年新气象,加入Onboard听友群,结识到高质量的听友们,我们还会组织线下主题聚会,开放实时旁听播客录制,嘉宾互动等新的尝试。添加小助手微信,Nine_tunes, 发送你的姓名、公司和职位,就可以获得进群链接。期待你来!---------------这是Onboard 2024年姗姗来迟的第一期更新,给大家拜个晚年!这次我们讨论的话题,就是这周AI领域最让人激动的一个重磅炸弹:OpenAI 发布了文生视频模型 Sora!仅仅根据提示词,就可以生成60秒的视频,连贯、高清,有丰富运镜,甚至符合大部分物理规律。未来真是比我们想象的还要更快到来。Sora是不是文生视频领域的GPT时刻?Sora 的真正创新是什么?scaling law 的暴力美学背后,还有哪些容易被忽略的技术细节?Sora 对于产生我们期望的世界模型意味着什么?Hello World, who is OnBoard!?如此重要的话题,我们当然要邀请来真正训练过视频大模型的专家和一线从业者,才能探究到本质。这次的深度解读,两个视角,长达三个小时,我们分成两个部分放送。今天的第一部分,专注技术解读。重磅嘉宾 Lijun Yu 是 VideoPoet 第一作者。VideoPoet 是另一个革命性的视频生成大模型, 由 Google Deepmind 2023年12月发布,8B参数量的模型产生的视频效果也震惊了世界。Lijun 绝对是transformer 和 diffusion 模型应用于视频生成领域最有发言权的研究员之一了。 另一位嘉宾是爱丁堡大学phd的 Yao Fu,他在LLM,尤其是 scaling law 领域的深度研究,跟专注做视频生成的 Lijun 的视角,形成非常有意思的补充和碰撞。即将放送的第二部分,我们邀请到真格基金管理合伙人,也是AI领域研究非常深度的投资人戴雨森,还有真格基金EIR,曾经的AI创业者,Peak。从投资人和创业者的视角,聊聊他们眼里Sora 对于创业公司意味着什么。本期嘉宾们都是在美国工作生活,难免夹杂很多英文技术术语。show notes 中会有注释,虽然烧脑但是绝对值得,不接受抱怨。嗯别忘了,添加小助手,Nine_tunes, 加入我们的听众群哈,等你来!满满的干货来袭,Enjoy!嘉宾介绍Lijun Yu(推特 @@LijunYu0), 卡内基梅隆大学人工智能领域的博士生。北京大学本科。CMU 导师是 Alexander Hauptmann 博士,聚焦于多媒体的研究。曾在 Google Deepmind 工作。Yao Fu(推特 @@Francis_YAO_), 爱丁堡大学博士生,北京大学本科哥伦比亚大学硕士。研究方向是人类语言的大规模生成模型,包括数据工程,复杂推理长上下文,以及模型背后的科学原理。开源社区 LLaMafia 创建人。OnBoard! 主持:Monica, 美元VC投资人,前 AWS 硅谷团队+ AI 创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学我们都聊了什么03:21 嘉宾自我介绍,如何进入视频生成领域,快评:Sora 的 demo 中,哪一个让你印象最深刻?为什么?10:52 VideoPoet 作者解读 Sora: 核心组成部分,重要创新,与以往 trasnformer + diffusion 工作的异同14:52 为什么最让人意料之外的视频长度和高分辨率?与LLM中处理 long context 的方式有什么相通之处?18:35 为什么模型中的 compression(压缩算法) 这么重要?Sora 在压缩上的创新是什么?24:05 视频生成模型中的 transformer 架构,与多模态LLM中的架构有什么异同?27:10 如何理解Sora 展现出的涌现能力?为什么说 Sora 在理解能力上会有局限性?29:39 为什么说将 Sora 与  GPT 这样的LLM结合起来会是大趋势?难点和可能诞生的机会是什么?35:01 Sora 真的具备了理解世界的能力吗?从视频生成和 LLM 角度,如何理解世界模型?49:19 如何估算 Sora 的大小和可能需要的计算量?这种模型形态未来还有什么增长空间?有什么局限?71:53 现有 Diffusion 架构为主的视频生成公司改成 Sora 架构会有什么难点?74:16 训练数据:VideoPoet 有哪些经验?Sora 可能有哪些创新?合成数据的价值和局限?88:55 快问快答(虽然也没有很快!)Sora 改变了你什么观点?大家对 Sora 有什么常见的误解、高估和低估?如何看待 Bill Peebles 论文被拒但是成为 Sora 带头人?2024年最期待发生什么?重点词汇 Latent Diffusion Transformer Stable Diffusion Autoregression model Latent space Context window Consistency model Sparse attention In-context learning Model serving我们提到的论文 VideoPoet: A large language model for zero-shot video generation, by Lijun Yu Scalable Diffusion Models with Transformer, by William Peebles, Saining Xie WALT: Photorealistic Video Generation with Diffusion Models, by Lijun Yu World Model on Million-Length Video And Language With RingAttention Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution ViViT: A Video Vision Transformer欢迎关注M小姐的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy) - Monica:美元VC投资人,前 AWS 硅谷团队+AI创业公司打工人 | 即刻:莫妮卡同学点赞、评论、转发,是对我们最好的鼓励!如果你用 Apple Podcasts 收听,也请给我们一个五星好评,这对我们非常重要。最后!快来加入Onboard!听友群,结识到高质量的听友们,我们还会组织线下主题聚会,开放实时旁听播客录制,嘉宾互动等新的尝试。添加小助手微信,Nine_tunes, 发送你的姓名、公司和职位,就可以获得进群链接。期待你来!
今年 OnBoard! 最后一期压轴上新!今年要谈论人工智能,怎么能错过这么一个重要的话题:机器人与AI的结合,或者说,Embodied intelligence, 具身智能。大模型的思路是否能带来机器人的ChatGPT时刻?机器人要具备泛化能力,有哪些进展又有哪些瓶颈?通过机器人让人工智能具备与环境感知和交互的能力,会为通用人工智能AGI带来哪些新的想象空间?Hello World, who is OnBoard!?今年下半年以来,尤其在国内,已经有不下十几家具身智能创业公司涌现。这一轮热潮中,从学术到工业落地,如何分别噪音与真实?以前将AI应用于机器人的尝试,比起这次的技术突破,又有哪些相同与不同?这次的嘉宾阵容,真是太适合回答这些问题了:我们邀请了 Google DeepMind 的研究员Fei Xia,Deepmind 跟具身智能相关的最重磅的几个研究,从SayCan, PaLM-E,到 RT2,他都是核心参与者。还有来自国内头部机器人创业公司高仙机器人的深度学习总监 Jiaxin, 带来产业界的视角。以及 UCSD 的研究员 Fanbo Xiang,他参与的 Maniskill,SAPIEN 等与模拟环境相关的研究,都在学术前沿。我们对AI泛化能力在机器人领域的落地进行了深入的讨论,也有不同观点的碰撞,精彩纷呈。其实这一期的录制已经过去了几个月,阴差阳错成了今年的压轴,也算是对于OnBoard 全年的一个圆满句号,又是整个OnBoard 旅程小小的逗号。新的一年,不论世界如何起落,我们都选择相信未来有希望,珍惜每一次对话,赞美每一个在未知中选择的勇士。Enjoy!嘉宾介绍Fei Xia, Google Deepmind 机器人团队资深研究员,PhD @Stanford University;PaLM-E,  PaLM-SayCan, RT-2 作者Jiaxin Li, 高仙机器人深度学习总监,ex字节跳动研究员,PhD @National University of SingaporeFanbo Xiang, PhD @UC San Diego;ManiSkill, SAPIEN 作者OnBoard! 主持:Monica:美元VC投资人,前 AWS 硅谷团队+ AI 创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学我们都聊了什么02:47 几位嘉宾的自我介绍,主要的研究领域05:34 大家最近看到的与具身智能相关的有意思的研究和行业进展14:23 自动驾驶领域的生成模型,如何保证符合物理规律?18:34 如何定义具身智能?什么是测试机器人AGI 的“咖啡测试” ?27:59 梳理 Google Deepmind 机器人领域核心研究脉络:大模型对具身智能带来怎样的影响?40:29 Fanbo 在做的 low level 控制相关的研究,如何与大模型相结合?45:39 具身智能的实现目前有哪些主要技术路径?我们什么时候可以达到共识?50:40 从产业落地的角度,如何看待大模型对机器人领域的影响?有哪些现实的挑战?67:37 什么时候需要机器人具备通用能力?我们需要端到端的具身智能吗?72:47 对 Scaling law 的争议:在机器人领域能复现吗?如何平衡长期通用性研究和短期商业落地的需要?90:41 在具身智能系统的设计中,如何考虑加入人机互动的因素?96:29 硬件的发展会如何影响具身智能的发展?101:18 未来3-5年,大家最期望看到具身智能领域实现怎样的突破?有怎样值得期待的未来?重要论文和词汇 PaLM-E: An Embodied Multimodal Language Model SayCan: Do As I Can, Not As I Say: Grounding Language in Robotic Affordances RT-1: Robotics Transformer for Real-World Control at Scale RT-2: Vision-Language-Action Models ManiSkill: Learning-from-Demonstrations Benchmark for Generalizable Manipulation Skills ManiSkill2: A Unified Benchmark for Generalizable Manipulation Skills SAPIEN: A SimulAted Part-based Interactive ENvironment NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis VoxPoser: Composable 3D Value Maps for Robotic Manipulation with Language Models, by Feifei Li VLM: Task-agnostic Video-Language Model Pre-training for Video Understanding Scaling laws for neural language models, by OpenAI Vision Transformer (ViT) - An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale ALOHA: A Low-cost Open-source Hardware System for Bimanual Teleoperation, from Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware The Bitter Lesson, by Rich Sutton MIT PDDL (Planning Domain Definition Language) sim2real: simulation to reality我们提到的公司 Wayve.ai: reimagining self-driving with embodied AI 有鹿智能 LoCoBot: An Open Source Low Cost Robot 宇树科技欢迎关注M小姐的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy)大家的点赞、评论、转发是对我们最好的鼓励!如果你能在小宇宙上点个赞,Apple Podcasts 上给个五星好评,就能让更多的朋友看到我们努力制作的内容,打赏请我们喝杯咖啡,就给你比心!有任何心得和建议,也欢迎在评论区跟我们互动~
不追热点但求深度思考的OnBoard! 又来啦!转眼间 OpenAI 轰轰烈烈的开发者日 (OpenAI DevDay) 已经过去一个多月了。这一个月也发生了太多事情。但是除却各种大瓜和八卦,DevDay 实打实是行业里相当重要的标志性事件。这次的涉及的,不仅是API大幅成本下降、API更新,还有GPT Store, Assistant API, 多模态等等重磅的上新。我们在devday 三周后,邀请了Monica 非常期待的四位嘉宾,在经历了这一段时间的消化和观察沉淀之后,一起聊聊他们不同角度的思考!Hello World, who is OnBoard!?这次的嘉宾,既有RPA头部公司来也科技的联合创始人兼CTO,也有真格基金EIR、经历两轮AI创业热潮的创业者视角,也有美团智能硬件负责人的软硬结合机会思考,还有来自 Google Deepmind 的研究员 Eric,从模型和技术的角度,解读 DevDay 中agent相关的更新。真的是非常精彩纷呈,又是一次接近两个小时火花飞溅的讨论。本期录制的时候,Google Gemini 还没有发布,但是回头来看,我们对多模态的讨论还是完全适用的!Enjoy!嘉宾介绍Peak, 真格基金 EIR(入驻企业家),Magi 创始人胡一川,来也科技联合创始人 & CTOEric Li,Google Deepmind 高级研究员孙洋,美团智能硬件LLM 负责人OnBoard! 主持:Monica:美元VC投资人,前 AWS 硅谷团队+ AI 创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学我们都聊了什么01:34 嘉宾自我介绍,如何进入AI领域的,最近看到的有意思的AI产品11:38 OpenAI Devday 的观感:有什么让你印象深刻的更新?与网上评论相比,有哪些被高估和低估了12:38 Peak: 为什么说GPT store 被高估了,GPT Builder 其实很有借鉴意义14:27 GPT store 跟一个 App store 的差距在哪里?OpenAI 未来会如何构建 app store?19:32 胡一川:为什么说 GPT4 Turbo 被低估了?21:40 价格和 context window 为什么重要?技术角度要持续提升,有哪些难点?29:53 Eric: 为什么不成熟的 GPT store 是一个好的决策33:27 孙杨:为什么说 GPT store 短期高估,长期被低估?为什么说Function call, JSON return 被低估了?39:01 DevDay 中与 Agent 相关的更新有什么亮点?对于创业公司有什么挑战,有什么机会?53:05 美团的LLM相关尝试,有哪些落地的场景?58:36 为什么不同的LLM作为 agent 的基座,效果会差别这么大?我们是否需要针对 agent 的基础模型?64:13 DevDay 的更新,对于创业公司有什么影响?哪些公司会受到比较大的影响?82:03 如何看待 Q* 的传闻?合成数据会对 LLM 生态产生怎样的影响?86:50 GPT-4v 为代表的多模态能力使用感受如何?有可能带来怎样的新机会?95:41 多模态能力的实现有怎样的技术路径?不同技术路径的核心差异和难点是什么?98:55 经历了“上一波”AI的创业者,对于这一次的AI创业热潮,看到哪些异同?给其他创业者怎样的建议?105:27 未来1-3年,最期待AI领域发生哪些变化?重点词汇 OpenAI Devday GPT Store Assistant API Context length LUI: Linguistic User Interface我们提到的公司 AI Pin by Humane Langchain: Build context-aware, reasoning applications with LangChain’s flexible abstractions and AI-first toolkit. Fixie AI: The fastest way to build conversational AI agents Imbue: build AI systems that can reason Character AI:  bringing to life the science-fiction dream of open-ended conversations and collaborations with computers.参考文章 devday.openai.com openai.com openai.com Peak 提到的论文:Retrieval meets Long Context Large Language Models Fixie: www.fixie.ai Imbue 的融资:imbue.com欢迎关注M小姐的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy)大家的点赞、评论、转发是对我们最好的鼓励!如果你能在小宇宙上点个赞,Apple Podcasts 上给个五星好评,就能让更多的朋友看到我们努力制作的内容,打赏请我们喝杯咖啡,就给你比心!有任何心得和建议,也欢迎在评论区跟我们互动~
两位主播在美国期间认识了许多在SaaS代表性公司的早期中国员工,这一期非常荣幸邀请到在 Notion 和 Figma 的两位朋友,李孟颖和王仲禹,聊聊两位加入两家公司的初衷和背后的故事。Hello world, who is onboard?对于关注美国软件市场的小伙伴们来说,Notion 和 Figma 如雷贯耳,我们简单介绍一下。Notion 是一个在线办公与协作平台。公司成立于 2012 年,经过近十年,它从一个笔记应用发展为集成了项目管理、任务管理和团队协作等多种场景的平台,如今全球已经超过 3,000 万用户。公司在 2021 年底完成了一轮 2.5 亿美元的C轮融资,投后估值高达 103 亿美元。早在 2022 年 11 月,Notion 发布了基于 GPT 打造的 Notion AI, 是最早推出 AI 功能的公司之一。Figma 是一款基于浏览器的UI设计与协作平台。公司也是成立于 2012 年。2022 年 9 月上市公司 Adobe 曾宣布以高达 200 亿美元的价格收购 Figma(近期因反垄断等问题被终止),公司当时 ARR 达到 4 亿美金。在今年 6 月,Figma 以宣布收购 Diagram 的方式进军 AI,帮助用户更加智能地激发设计灵感、提供设计建议和降低设计门槛。在近两小时的交流(和下图两位嘉宾风格迥异的背景图)中,我们也得以窥见,两家看起来非常相似以 Product-led Growth(PLG) 为代表的公司,在近几年展现出非常不同的发展方式和管理风格,以及在 AI 热潮下不一样的“冷思考”。大家 Enjoy!嘉宾介绍:李孟颖:Notion 数据科学团队成员,负责管理产品增长、市场和财务数据分析,同时也是一名天使投资人和A16Z的 scout。曾在 Meta 负责内容创收和广告产品组的数据分析团队。王仲禹: Figma 首位移动工程师(现参与 Figma Gen AI 的工作),前 Uber Driver Experience / Uber Elevate 移动工程师,前 Google 工程师。OnBoard! 主持Monica:美元VC投资人,前 AWS 硅谷团队+ AI 创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学高宁:前SaaS及科技投资人,Global SaaS 社区 Linkloud 发起人,公众号我思锅我在 (ID: thinkxcloud) 主理人。| 即刻:High寧我们都聊了什么:02:17 两位嘉宾自我介绍以及关于自己的 fun fact。11:45 选择在早期加入初创公司时最主要的原因是什么?17:26 Notion 高速发展三年的里程碑以及背后数据科学扮演怎样的角色?23:50 Notion 在社交媒体上做了哪些推广以及孟颖做了哪些数据工作来支持增长?28:50 对于初创公司,早期需要有哪些基础的数据分析工具?30:42 Figma 发展过程中的里程碑以及仲禹加入移动产品组的经历。37:46 收入增长 20 倍后,为什么对 Figma 来说 PLG 仍然是重要的增长动力?41:17 具体说明数据科学团队是如何参与 Notion 各项业务运营的。48:22 在用户 Onboarding 环节孟颖是如何通过数据实验来提升注册转化?54:08 Figma 内部产品迭代的决策流程以及 FigJam 是如何诞生的。62:13 什么时候 Figma 会考虑收购来而不是自研来增强自身产品?65:54 如果遇到产品迭代不顺利时,内部又是如何决策的?68:43 随着企业客户增加,两家公司是如何平衡 SMB 和大企业间的需求?76:07 为什么 Figma 的 Config 大会对用户社区是一个巨大推动?82:02 对 Notion 非常重要的“大使计划”现在发展到怎样规模?86:44 两家公司如何看待与微软等相关大厂的竞争?94:04 Notion AI 是如何快速从一个 MVP 到现在的产品形态?101:09 为什么 Figma 对 AI 的态度和策略与 Notion 截然不同?108:54 在集成 AI 的过程中比较大的挑战是什么?以及近期还会关注什么新技术?114:58 力挺远程办公,Figma 的创始人 Dylan 是怎样的性格以及如何体现在公司文化上?119:17 为什么 Notion 却不支持远程,以及创始人 Ivan 是怎样的风格?121:42 快问快答!提到的公司或产品: Adobe Diagram Stripe Slack Dropbox Snowflake Hex Jupiter Tableau Statsig Airtable Loop OpenAI Anthropic Apple Vision Pro重点词汇: Data science: 数据科学 Page of page: 页面嵌套等功能 Drag and drop:拖拉拽等功能 FigJam: Figma 推出的白板产品 Pros and cons: 利弊 Philosophy: 理念 Project management: 项目管理 User journey: 用户旅程 Metric: 指标 Influencer: 网红 Onboarding: 用户上手引导 Drop off this flow: 流程上流失 IC: Independent Contributor, 公司里只贡献代码非管理的工程师 SLG: Sales-led Growth,需要销售推动为主的增长模式 Hypothesis: 假设 Completion rate: 完成率 North star: 北极星指标 Community: 社区 Enterprise: 企业级客户 Ambassador program: 大使计划 Accelarator: 加速器 Iteration: 迭代 Remote: 远程(办公)嘉宾推荐的书籍及播客: Atlas of the Heart Latent Space别忘了!同步关注两位 Host 的微信公众号,看更多干货内容哦: Monica:美元VC投资人,前 AWS 硅谷团队+ AI 创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学 高宁:前SaaS及科技投资人,Global SaaS社区 Linkloud 发起人,公众号我思锅我在 (ID: thinkxcloud) 主理人。| 即刻:High寧大家的点赞、评论、转发是对我们最好的鼓励!如果你用 Apple Podcasts 收听,也请给我们一个五星好评,这对我们非常重要。感恩!
转眼就到了12月,回顾今年Onboard 的主题词,真的非AI和大模型莫属了。借着本周技术博客月和上周 ChatGPT发布一周年的契机,我们决定邀请横跨中美的一级和二级市场投资人,做一个AI的年度回顾,投资思考和未来展望。本期播客是参与 #2023技术播客节 共创共建的一期内容。12月4日至8日,每天围绕一个主题,带来8~11期的内容,更多详情也可关注官网 podfest.tech,或者微信公众号、即刻、X搜索「2023技术播客节」,欢迎大家多多关注,一键多连!Hello world, who is OnBoard!?在AI日新月异发展的几个月,两位主播也有机会在美国待了一段时间,身临其境地感受了硅谷创新腹地的氛围。这次的两位嘉宾,都在中美两地穿梭,视角又各有不同。一位是在对冲基金深度跟踪美股市场的 Stella Huang,另一位是之前做客过OnBoard!的前 Opendoor 数据科学负责人杜磊,这次以硅谷早期VC的身份返场。我们从红杉资本提出的 生成式AI 下半场 (Second Act) 的概念开始,回顾了这白驹过隙的一年印象深刻的事件,探讨了宏观市场和经济的影响,又深入聊了许多AI行业创业者和投资人最关心的问题:什么是AI 产品的核心竞争力?什么是 GPT 之上的 thick wrapper?如何思考创业公司和现有巨头的竞争?生成式AI会带来哪些B端和C端的创新机会?……很多问题,我们也没有答案。但是将阶段性的思考分享出来,抛砖引玉。如果你也对AI创业的话题感兴趣,欢迎在公众号后台联系两位主播,我们希望邀请到更多朋友,不同的视角,不同的探索,相同的未来憧憬。未来不是推演出来的,是前仆后继的创造者缔造出来的。又是一次超长的闲聊,希望你 Enjoy!嘉宾介绍杜磊:曾在房地产科技上市公司Opendoor担任数据科学负责人,后来联创了DeFi初创公司Huma Finance。现在作为Sancus Ventures的合伙人,专注在AI和区块链基础设施,大数据,开源和企业软件等领域。Stella: 现美元对冲基金科技行业投资人,前百度战略部门。OnBoard! 主持Monica:美元VC投资人,前 AWS 硅谷团队+ AI 创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学GN:前SaaS及科技投资人,Global SaaS 社区 Linkloud 发起人,公众号我思锅我在 (ID: thinkxcloud) 主理人。| 即刻:High寧我们聊了什么02:07 两位嘉宾自我介绍,今年最喜欢的AI产品(除了 ChatGPT!)04:44 如何理解红杉报告中提出的“AI进入了 Act Two” 的判断?AI时代应该与移动互联网或者工业革命对比吗?19:39 AI 创业公司 Writer 如何用“重”的产品构造GPT之上的壁垒,超越Jasper?26:50 ChatGPT 发布一周年依赖,有哪些你觉得最有里程碑意义的事件?35:25 中美宏观经济环境如何影响一二级市场的投资?我们对未来资本环境有何预期?对创业者意味着什么?47:35 AI创造的价值,哪些是现有大公司的机会,哪些是创业公司的机会?67:13 什么是 AI 公司的护城河?真的是数据飞轮吗?79:25 GPT Wrapper 就没有价值吗?什么是“厚”的产品价值?一个新产品如何成为“事实标准”?92:07 ToC 产品出现 killer app 了吗?垂直领域的 ToB 产品落地速度,是否低于预期?102:56 Agent 实际落地情况如何?有哪些困难和初步进展?117:01 多模态:GPT-4v展现的多模态能力带来了什么惊喜?未来多模态能有什么场景?118:29 年末回顾,你对于AI的观点比起年初,经历了哪些变化?对明年有什么期待?提到的公司 Anyscale Sambanova Modular Chegg Harvey AI Jasper AI Writer Monterey AI Notion Twilio Confluent Snowflake Sakana Extend AI Induced AI参考文章 www.sequoiacap.com www.sequoiacap.com writer.com www.maginative.com a16z.com别忘了!同步关注两位 Host 的微信公众号,看更多干货内容哦: Monica:美元VC投资人,前 AWS 硅谷团队+AI创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学 GN:前SaaS及科技投资人,Global SaaS社区 Linkloud  发起人,公众号我思锅我在 (ID: thinkxcloud) 主理人。| 即刻:High寧大家的点赞、评论、转发是对我们最好的鼓励!如果你用 Apple Podcasts 收听,也请给我们一个五星好评,这对我们非常重要。感恩!关于「2023 技术播客节」缘起于2022仲夏时节技术播客之间的梦幻联动,我们感受到了社区共创共建的力量。今年我们再接再厉,集结了30+播客、5大出品人、25+社区,希望拉动更多技术生态的内容创作者,一起用声音来表达,建设自家技术影响力,推动更高粘性、更深互联、更持久共鸣的用户社区构建。
好久不见!OnBoard! 回来啦!这一期又是考验听力的全英文访谈。这次,我们跟亲历者聊聊,今年AI领域最受瞩目的一笔10亿美金的并购:Databricks 今年6月以13亿美金的“天价”,收购了当时成立2年的大语言模型(LMM)基础设施创业公司 MosaicML。Hello World, who is OnBoard!?可以说,这是今年最受关注的AI领域收购之一了,之后AI 基础设施领域的巨头和创业公司,都被这次收购推动,开始了融资和产品迭代的热潮。收购的时候,MosaicML 仅有60多人,但是已经推出了 MPT 7B, 30B 两个开源大语言模型,总下载量超过330万。也是最早一批推出开源LLM的公司之一。这次访谈,Monica 不仅邀请到了 MosaicML 联合创始人、CTO,Hanlin Tang, 还邀请到还有之前来OnBoard! 做过客的非常专业的硅谷成长期投资人, Sapphire Ventures 合伙人,Casber Wang,我们得以从创始人和投资人的视角,一起解读这个有里程碑意义的收购,以及对于生成式AI,AI infra 核心竞争力和未来格局等等话题进行非常有意思的探讨。准备好你的英语听力,enjoy!嘉宾介绍Hanlin Tang (@hanlintang), 现Databricks Neural Networks CTO, 前 MosaicML co-founder & CTO, Intel AI Lab Senior Director, Nervana (2016.9 被Intel 4亿美金收购)创始团队成员Casber Wang (@CasberW), Sapphire Ventures 合伙人,专注data, infra, 安全等领域,投资了Auth0, JumpCloud, StarTree 等。Sapphire Ventures 是一家资产管理总额超过110亿美金的全球风险投资基金。Onboard!主持:Monica(推特:@Monica_XieY):美元VC投资人,前 AWS 硅谷团队+AI创业公司打工人,公众号:M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学我们都聊了什么01:57 两位嘉宾自我介绍,Hanlin 最近感兴趣的AI产品,以及Casber 最近在AI领域的投资08:40 LLM 的到来对传统 MLOps 公司有什么影响14:13 MosaicML 介绍,2021年如何发现这个创业机会的17:28 ChatGPT 发布以来,MosaicML 经历了哪些重要的里程碑事件,行业有哪些重要变化21:41 MosaicML 早期客户是哪些公司?22:55 MosaicML 的几个重要产品决定:一开始为什么要做开源?26:43 创业公司应该如何思考是否要开源?34:36 MosaicML 如何做开源商业化?商业化模式如何演进?37:17 如何思考 LLM serving 和训练平台的产品竞争力和差异性?MosaicML 的平台如何在探索中演进?42:32 MosaicML 为何推出自己的开源LLM?45:39 客户如何选择LLM?常见的问题是什么?有什么常见的误解?51:11 开源和闭源LLM格局会如何演进?如何影响LLM周边的生态?我们能从云计算生态发展历史中学到什么58:39 客户如何衡量LLM的performance? 客户需要的是怎样的服务?62:06 LLM 会如何改变SaaS 生态?为什么说我们低估了数据对新的平台的意义?70:52 为什么说提高LLM 训练效率和成本没有 silver bullet? 做成本优化的公司如何设计商业模式?82:00 企业如何思考是否要自己训练LLM?还是在已有模型上 fine tune?89:23 MosaicML 被 Databricks 收购之后会有哪些变化?下一个聚焦的点是什么?91:32 Casber 作为投资人,如何看待 Databricks 对 MosaicML 的收购?对未来行业有什么影响?95:44 Hanlin 创业以来对于行业的观点有过什么改变?过去和未来有什么值得关注的变化?108:52 如果坐时光机到5年后,你最想问的问题是什么?提到的公司 MosaicML Databricks Weights & Bias FlowGPT参考文章 www.mosaicml.com www.youtube.com www.latent.space blog.replit.com www.databricks.com www.latent.space欢迎关注M小姐的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy)大家的点赞、评论、转发是对我们最好的鼓励!如果你能在小宇宙上点个赞,Apple Podcasts 上给个五星好评,就能让更多的朋友看到我们努力制作的内容,打赏请我们喝杯咖啡,就给你比心!有任何心得和建议,也欢迎在评论区跟我们互动~
OnBoard! 又一期与硅谷一线投资人的访谈来了!这一次邀请到的是Monica 的好朋友,也是硅谷最顶尖的风险投资基金之一,Andreessen Horowitz, 也就是大家常说的 a16z 的投资合伙人 Jennifer Li!Hello World, who is OnBoard!?Jennifer 是一位来自产业界的投资人,原来在独角兽创业公司 AppDynamics 担任PM的她,转型投资人之后,在a16z 的6年里一直专注企业软件、大数据、开源等领域。关注这个方向的创业者和从业者,或许很多人都读过 Jennifer 在a16z 网站上撰写的多篇非常深度的分析文章,包括开源商业化,Modern Data Archiecture 等等。她投资的公司包括大数据领域耳熟能详的 dbt, Motherduck, AI领域最火的公司之一 Elevenlabs 等等。Jennifer 是硅谷一线基金中为数不多的华人投资合伙人,难得有机会跟 Jennifer 聊一聊她视角,深入剖析她投资 dbt 的过程,对大数据和infra领域的研究,对当下市场和未来机会的思考。这次两个多小时的访谈,Jennifer 的分享超级无私有诚意,绝对值得二刷。嘉宾长期在北美工作生活,夹杂英文在所难免,不接受抱怨!Enjoy!嘉宾介绍Jennifer Li (推特:@JenniferHli), 硅谷顶尖风险投资机构 Andreessen Horowitz (a16z) 投资合伙人,专注于 data infra, 开源,开发者工具,协作应用等。加入 a16z 之前,Jennifer 曾经是 AI 创业公司 Solvvy 和 被 Cisco $3.7Bn 收购的 AppDynamics 的产品经理。Onboard!主持:Monica(推特:@Monica_XieY):美元VC投资人,前 AWS 硅谷团队+AI创业公司打工人,公众号:M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学我们都聊了什么01:45 Jennifer 进入风险投资的职业转型,为什么说a16z 是一家独特的风险投资机构08:43 a16z 如何用庞大的运营机构为被投企业提供价值11:41 Jennifer 复盘如何在A轮发现40亿美金的开源独角兽 dbt19:17 dbt 是做什么的?dbt 崛起背后是怎样的大趋势?21:44 在早期如何识别一个切入点很小的开源工具的商业价值?27:59 dbt 如何实现产品线延伸?33:24 dbt 的开源商业化路径是怎样的?开源工具如何实现商业成功?42:27 a16z 如何思考 data infra 的投资逻辑,如何理解这个领域所经历的产业周期?46:25 现在创立一家 data infra 公司还有机会吗?未来几年的看点在哪里?52:50 投资 dbt 时候遇到什么挑战和质疑?56:09 不同阶段的创业公司,尤其在早期,如何判断投资价值?投资人有哪些常问的问题?62:16 投资人对于不同阶段的创始人,重点在观察什么?66:42 近年剧烈变化的资本市场,对于早期 data infra 公司的估值有什么影响?早期投资人的估值判断依据有什么?74:41 infra 公司的商业化路径应该如何规划?ARR 真的那么重要吗?79:02 infra 领域最近有什么被高估和被低估的方向?84:28 这一次的AI浪潮跟“上一波”有什么核心差异?Jennifer 关注的AI投资主题是什么?93:03 AI 时代的应用价值是什么?AI 应用是否需要做自己的模型?101:47 Jennifer 在AI领域主要关注哪些重要的趋势?109:10 如何看待热潮中的AI公司早期增长可能存在的噪音?114:49 我们还需要一个新的大语言模型公司吗?117:25 早期公司如何找到共创客户(design partner)?什么是好的共创客户?120:00 快问快答!我们提到的内容 dbt: dbt™ is a SQL-first transformation workflow that lets teams quickly and collaboratively deploy analytics code following software engineering best practices like modularity, portability, CI/CD, and documentation. Now anyone on the data team can safely contribute to production-grade data pipelines. Coalese: dbt 的年度大会 Fivetran: Fivetran is the trusted platform that extracts loads and transforms the world's data. Snowflake Motherduck Retool OpenAI Anthropic Jasper AI Martin Casado Ben Horowitz Jennifer 推荐的书:The Mom Test: How to talk to customers & learn if your business is a good idea when everyone is lying to you, by Rob Fitzpatrick Jennifer 推荐的书:Tomorrow, and Tomorrow, and Tomorrow: A novel, by Gabrielle Zevin词汇注释 ELT (Extract, Load, Transform): 一种数据集成过程,其中原始数据被提取,加载到数据存储系统中,然后在存储中进行转换。 ETL (Extract, Transform, Load): 一种新的数据集成过程,其中原始数据被提取,转换为结构化格式,然后加载到数据存储系统中 Data transformation: : 数据转换是将数据从一种格式或结构转换为另一种的过程,通常是为了使其更适合分析或适应特定的数据库或应用程序 Data pipeline: 数据管道是一组将数据从一个系统移动并处理到另一个系统的过程,通常涉及ETL等阶段。 Analytics engineering: applies software engineering best practices to analytics code Low hanging fruit: 最容易解决的任务或问题 Traction: 初创公司或新产品在获得市场接受、客户或达到某些里程碑方面的可衡量的进展 Product Market Fit (PMF): 当一个产品满足真正的市场需求并满足强烈的市场需求时,表明该产品已经找到了目标受众并满足了他们的需求 Pave the way forward: 为未来的进展或发展创造一条路径或奠定基础,使后续的行动或创新变得更容易参考文章 Emerging Architectures for Modern Data Infrastructure: 2020 | Andreessen Horowitz Emerging Architectures for Modern Data Infrastructure | Andreessen Horowitz Open Source: From Community to Commercialization | Andreessen Horowitz a16z 为何投资 dbt a16z 为何投资 motherduck A Framework for Finding A Design Partner | Andreessen Horowitz Bottom Up Pricing & Packaging: Let the User Journey Be Your Guide | Andreessen Horowitz欢迎关注M小姐的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy)如果你能在小宇宙上点个赞,Apple Podcasts 上给个五星好评,就能让更多的朋友看到我们努力制作的内容,打赏请我们喝杯咖啡,就给你比心!有任何心得和建议,也欢迎在评论区跟我们互动~
AI 上新不止!这一次我们回归到与创业公司的深度访谈,这期我们请来了一位在 AI 热潮中高速发展,产品也得到国内不少用户认可的初创公司创始人,美国新一代生产力工具 Gamma 的联合创始人兼 CEO Grant Lee。Hello World, who is OnBoard!?Gamma 最开始定位像 Notion 一样用模块或卡片方式帮助人们更高效创建 PPT。在今年集成 AI 功能后,产品现在可以让用户直接以对话或上传源文档等方式,任意撰写和开发创意,成为能更高效展示创意的视觉内容生成工具。公司成立于 2020 年,总部位于旧金山湾区。团队于 2021 年 8 月推出了 beta 版,并于去年底正式发布,如今已拥有数百万用户。Gamma 于 2021 年完成了 Accel 领投的 700 万美金天使轮融资后,在今年又获得了 A 轮融资。Grant Lee 作为 SaaS 领域的连续创业者,我们和他从公司及产品诞生,聊到 AI 对用户创意和使用上的巨大改变,最后作为两个孩子的父亲,他也谈到 AI 对下一代在生活和工作的影响,都给我们带来很多启发。还未体验产品的朋友,赶快点击:https://gamma.app/,尝试一下吧!播客逐字稿同步上线,搭配收听效果更佳:OnBoard!独家|对话Gamma创始人:拆解产品-1到0方法论与定价策略;AI如何重塑Gamma,解锁潜在需求与创造力!欢迎多提建议,Enjoy!嘉宾介绍Grant Lee, Gamma 联合创始人兼CEO,曾在两家 SaaS 公司 ClearBrain(被上市公司Amplitude收购) 和 Optimizely 担任高管,毕业于斯坦福大学本科及研究生。OnBoard! 主持:Monica:美元VC投资人,前 AWS 硅谷团队+ AI 创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学OnBoard! 主持:GN:前SaaS及科技投资人,Global SaaS 社区 Linkloud 发起人,公众号我思锅我在 (ID: thinkxcloud) 主理人。| 即刻:High寧我们都聊了什么00:01:24 Gamma是什么以及Grant为何会创立Gamma?00:02:51 Grant个人过往经历及一个自己的有趣故事。00:03:58 Grant连续SaaS创业的经历对创立Gamma的帮助。00:05:49 Gamma现在到什么阶段以及经历了哪些里程碑?00:08:59 如何看待“视觉传递”产品的历史以及Gamma诞生的机会?00:12:17 在早期,如何验证产品概念和需求是足够普遍的?00:14:33 刚开始有哪些用户反馈是意料之外的以及对早期设计的影响?00:16:54 早期拓展用户采取了哪些市场拓展策略(GTM)?00:19:38 早期如何准确设计并传递产品价值(Product message)?00:22:11 跟早期相比,现在Gamma在价值定位上做了哪些调整?00:24:27 Gamma是如何验证Product-Market-Fit(PMF) 的?00:27:13 如何看待收费以及Grant背后的思考。00:29:28 在进行付费调研时有哪些有意思的发现?00:33:55 Grant看来在收费策略里创始人最容易犯的错误。00:35:32 Gamma产品是如何结合AI的以及背后是怎样的思考?00:39:32 在设计AI功能的过程中遇到了哪些挑战?00:42:16 用户画像在这个过程中经历了哪些变化?00:44:32 在集成AI的时候技术选择上经历了哪些思考?00:48:06 为什么做一款好的AI产品远比做炫酷Demo难多了?00:50:17 产品迭代中如何协调基本功能和AI的优先级?00:52:23 未来我们真的还需要PowerPoint吗?00:54:23 AI会进一步解构Office这样的一站式生产力套件吗?00:56:45 为什么Grant认为现在最大的竞争对手是“用户行为”的迁移?00:58:22 还有哪些技术趋势或用户行为变化是Grant最关注的?01:00:39 在全球化上Grant有哪些有意思的发现和规划?01:03:48 在AI的影响下,不同地区的用户行为有什么变化吗?01:06:48 同时Gamma是如何引导用户接受并开始使用AI的?01:08:26 近期Gamma在功能上将有哪些重要迭代以及未来还有哪些突破?01:11:52 在社区建设上Gamma有哪些最佳实践?01:13:41 最后,Grant如何对待现在来自企业级客户的需求?01:15:27 快问快答!精彩的书籍推荐以及作为孩子父亲,如何看待AI对下一代的影响?我们聊到的公司 Notion:一站式办公协作平台 Canva:图像创作工具 Beautiful:演示文稿工具 Pitch:演示文稿工具 Optimizely:数字营销体验管理平台 Salesforce:营销CRM Airtable:表格管理工具嘉宾推荐的书 Shoe Dog All the Light We Cannot See别忘了!同步关注两位 Host 的微信公众号,看更多干货内容哦: Monica:美元VC投资人,前 AWS 硅谷团队+AI创业公司打工人,公众号M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学 GN:前SaaS及科技投资人,Global SaaS社区 Linkloud  发起人,公众号我思锅我在 (ID: thinkxcloud) 主理人。| 即刻:High寧大家的点赞、评论、转发是对我们最好的鼓励!如果你用 Apple Podcasts 收听,也请给我们一个五星好评,这对我们非常重要。感恩!
近3小时的硅谷AI重磅嘉宾现场对谈,下集光速奉上!如果你还没有听过上一期,赶紧去补课!Hello World, who is OnBoard!?简单介绍一下这次Monica 期待已久的嘉宾组合! 两位都在OpenAI工作过的技术大牛,包括Nvidia资深研究员 Jim Fan, 除了对生成式agents 和机器人的具身智能有深度研究外,他的Twitter 连 Jeff bezos 都关注,是AI领域全球范围内的顶级大V。另一位嘉宾戴涵俊,Google Deepmind 的资深研究员,也是 Google 新一代大语言模型的深度参与者。最后,兼任主持和嘉宾的硅谷上市公司华人高管,硅谷徐老师, 每次来 Onboard! 串台都大受好评。这是三个小时播客的第二部分。上一期的内容,我们深度讨论了最近AI领域最火的话题,Generative Agents, 生成式代理。这一期更是精彩纷呈,包含了AI领域更多核心话题,包括多模态大模型的研究进展,具备具身智能 embodied AI 的机器人如何打造,AI对saas的影响,我们对未来AI的商业和社会畅想等等。真的是非常尽兴的讨论,你也可以拿起笔记本做笔记了。几位嘉宾都是长期在美国工作生活,夹杂英文在所难免,不接受抱怨。Enjoy!嘉宾介绍 Jim Fan(推特:@DrJimFan),Nvidia 高级 AI 研究科学家,曾在OpenAI工作,Stanford PhD 李飞飞实验室 戴涵俊(推特:@hanjundai),Google Deepmind 资深研究员,深度参与 Google 大语言模型项目,曾在OpenAI工作,Georgia Tech PhD 硅谷徐老师(推特:@h0wie_xu),硅谷连续创业者、人工智能高管、斯坦福商学院客座讲师,「科技早知道」主播 |微信公众号:硅谷云| AI博客:howiexu.substack.com 主持:Monica(推特:@Monica_XieY):美元VC投资人,前 AWS 硅谷团队+AI创业公司打工人,公众号:M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学我们都聊了什么01:55 为什么 Jim 觉得 Llama 2 作为语言模型,对于多模态模型和机器人有重大推动05:24 Hanjun 解读多模态大模型的两种实现方式07:47 多模态大模型只是解锁了新的场景,还是能更大提升大模型本身的智能?如何理解大模型的智能?12:34 为什么说机器人的多模态问题更有挑战?16:35 处理多模态训练数据有哪些难点?18:12 大模型训练还需要哪些工具?Infra/tooling 有哪些机会?19:51 亲历OpenAI 的经历回顾和感受:2016-2020,OpenAI 都发生了什么25:11 OpenAI 近年的发展,哪个时刻震撼了你?34:20 为什么说 Evaluation 是大语言模型最被低估的挑战之一?39:54 未来1年和未来10年,你最期待人工智能领域带来什么?46:17 我们自己和下一代应该如何为未来做准备?59:33 有趣的 closing 和未来展望:被 Jeff Bezos 关注是什么感觉?!我们提到的内容 Llama 2: Meta 开源的大语言模型 Jim Fan 对于Llama 2 的解读 OpenAI 赢得DOTA 游戏比赛 LSTM (Long Short-term Memory) Jim Fan 对大猩猩玩Minecraft 的解读 DALL-E 2: DALL·E 2 is an AI system that can create realistic images and art from a description in natural language (by OpenAI) CLIP: Connecting text and image ImageNET:  an image dataset organized according to the WordNet hierarchy. AlexNET: ImageNet Classification with Deep Convolutional Neural Networks重点词汇 RLHF (Reinforcement Learning with Human Feedback): 人类反馈的强化学习 - 一种AI模型通过人类反馈与传统的强化学习结合来学习的方法。 Fine tuning: 微调 - 在特定的数据集上进一步训练预训练的机器学习模型,使其适应特定任务的过程。 Hallucination: 幻觉 - 在AI中,指的是模型生成不在输入中的信息,可能导致输出不准确。 Multi-modal model: 多模态模型 - 能够理解和处理多种类型数据(如文本、图像和声音)的模型。 Auto regressive model: 自回归模型 - 一种统计模型,它使用一个变量的过去值来预测其未来值。 Diffusion model: 扩散模型 - 用于描述信息、疾病或创新等东西如何在群体中传播的模型。 Tokenize: 分词 - 将文本分解成更小的部分(如单词或子词)的过程,通常在文本处理或自然语言处理中使用。 Intuitive physics: 直观物理 - 人类对物理现象的直观理解,例如物体如何移动或互相碰撞。 Embodied AI: 具体化的人工智能 - 通过物理或虚拟的身体与环境互动的AI系统,例如机器人或虚拟代理。 CVPR (Computer Vision and Pattern Recognition): 计算机视觉和模式识别 - 专门研究计算机如何“看”并从图像或视频中理解内容的领域。 Walkaround: 绕行 - 解决问题或障碍的方法欢迎关注M小姐的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy)大家的点赞、评论、转发是对我们最好的鼓励!如果你能在小宇宙上点个赞,Apple Podcasts 上给个五星好评,就能让更多的朋友看到我们努力制作的内容,打赏请我们喝杯咖啡,就给你比心!有任何心得和建议,也欢迎在评论区跟我们互动~
承诺大家的大波AI上新来啦!这次的嘉宾是Monica一直期待的重磅组合,能听到AI领域如此一线的核心从业者的分享,真是太难得了。这次在硅谷创新腹地,毗邻 Stanford 的 Palo Alto 线下录制, 不知不觉就聊了近三个小时,我们分成上下期,方便大家收听!Hello World, who is OnBoard!?两位AI研究者都在OpenAI 工作过。Nvidia 资深研究员 Jim Fan,是Twitter 上AI领域的顶尖KOL,连亚马逊的创始人 Jeff Bezos 都在关注,几乎每一条twitter 分析都是必读文章。戴涵俊是Google Deepmind 的资深研究员,更是Google 大语言模型的深度参与者。再次来串台的硅谷上市公司华人高管,硅谷徐老师, 持续高质量输出。上期的内容,我们围绕最近AI领域最火的话题,Generative Agents(生成式智能体)。两位AI研究员都对这个领域有最一线的研究和实践经验,我们深入探讨了从AutoGPT开始,Generative Agents 从技术到应用,都有哪些新的进展、技术和场景的挑战,由此延伸到开源与闭源大语言模型的竞争格局。跟EP35 Monica 与另一位AI研究员符尧的访谈对比听听就发现,Generative Agents 这个前沿领域,显然还有很多尚未有共识的地方。下一期,我们会讨论更多AI领域核心话题,包括多模态模型,机器人应用落地,AI对saas的影响,LLM发展史,未来畅想等等,更是不容错过。赶紧关注Onboard!几位嘉宾都是长期在美国工作生活,夹杂英文在所难免,不接受抱怨。Enjoy!嘉宾介绍Jim Fan(推特:@DrJimFan),Nvidia 高级 AI 研究科学家,曾在OpenAI工作,Stanford PhD 李飞飞实验室戴涵俊(推特:@hanjundai),Google Deepmind 资深研究员,深度参与 Google 大语言模型项目,曾在OpenAI工作,Georgia Tech PhD硅谷徐老师(推特:@h0wie_xu),硅谷连续创业者、人工智能高管、斯坦福商学院客座讲师,「科技早知道」主播 |微信公众号:硅谷云| AI博客:howiexu.substack.com主持:Monica(推特:Monica_XieY):美元VC投资人,前 AWS 硅谷团队+AI创业公司打工人,公众号:M小姐研习录 (ID: MissMStudy) 主理人 | 即刻:莫妮卡同学在粗糙简陋的 studio 顺利完成3小时录制!Hanjun 的霸气车牌!我们都聊了什么02:50 几位嘉宾自我介绍,最近看到了什么有意思的AI项目05:51 Hanjun @Google Deepmind: 最近发表的 speculative decoding 工作如何提升模型速度09:14 Jim Fan @Nvidia: 为什么AI agents 是值得关注的方向,基于agents 有什么应用12:42 什么是 AI agents? 好的 Agents 需要怎样的核心能力16:54 企业场景落地 AI Agents 应用,主要有哪些挑战?25:18 AI Agents 目前落地的挑战,是由底层基础模型的能力决定的吗?35:56 如何看待目前 AI Agents 不同的实现方式?Adept AI 的形态会被取代吗?39:57 未来工具使用更多是 AI agents 来完成,对于应用生态意味着什么?48:18 Llama 2 开源对于LLM生态意味着什么?底层基础模型会赢家通吃吗?56:58 如何理解开源和闭源模型的壁垒?68:24 我们需要领域专有模型吗?我们提到的内容 Hanjun 提到的论文:Accelerating Large Language Model Decoding with Speculative Sampling Jim 的论文: Voyager: An Open-Ended Embodied Agent with Large Language Models Jim 提到的论文:Generative Agents: Interactive Simulacra of Human Behavior 开源项目 Auto-GPT: An experimental open-source attempt to make GPT-4 fully autonomous Llama 2: Meta 开源的大语言模型 Adept.ai: a new way to use computers. Transformer 论文作者创办 Character AI Jim 提到的基于大语言模型的游戏:病娇AI女友  MPT-7B (MosaicML Pretrained Transformer): MosaicML 发布的可商用开源大语言模型 Anthropic: Transformer 论文作者创立的大语言模型公司 Harvey:为律所设计的生成式AI工具 讨论 Google 等大厂LLM竞争壁垒的文章 ($$):Google "We Have No Moat, And Neither Does OpenAI"重点词汇 RLHF (Reinforcement Learning with Human Feedback): 人类反馈的强化学习 - 一种AI模型通过人类反馈与传统的强化学习结合来学习的方法。 Fine tuning: 微调 - 在特定的数据集上进一步训练预训练的机器学习模型,使其适应特定任务的过程。 Hallucination: 幻觉 - 在AI中,指的是模型生成不在输入中的信息,可能导致输出不准确。 Multi-modal model: 多模态模型 - 能够理解和处理多种类型数据(如文本、图像和声音)的模型。 Embodied AI: 具体化的人工智能 - 通过物理或虚拟的身体与环境互动的AI系统,例如机器人或虚拟代理。 Quantization: 量化 - 限制用于表示数字的位数的过程,有助于减小机器学习模型的大小并加速计算。 Mixture-of-experts (MoE): 专家混合模型 - 一种机器学习方法,其中模型的不同部分专门处理不同类型的数据或任务。 Inference: 推断 - 已训练的AI模型基于所提供的数据预测结果的过程。 Reasoning: 推理能力 - AI系统根据信息或一组事实得出结论的能力。 NPC (Non-Player Character): 非玩家角色 RPA (Robotic Process Automation): 机器人流程自动化 First class citizen: 一等公民欢迎关注M小姐的微信公众号,了解更多中美软件、AI与创业投资的干货内容!M小姐研习录 (ID: MissMStudy)大家的点赞、评论、转发是对我们最好的鼓励!如果你能在小宇宙上点个赞,Apple Podcasts 上给个五星好评,就能让更多的朋友看到我们努力制作的内容,打赏请我们喝杯咖啡,就给你比心!有任何心得和建议,也欢迎在评论区跟我们互动~
loading
Comments (1)

Paja Storec

💚WATCH>>ᗪOᗯᑎᒪOᗩᗪ>>👉https://co.fastmovies.org

Jan 16th
Reply