DiscoverPractical AI: Machine Learning, Data Science
Practical AI: Machine Learning, Data Science

Practical AI: Machine Learning, Data Science

Author: Changelog Media

Subscribed: 4,084Played: 121,755
Share

Description

Making artificial intelligence practical, productive, and accessible to everyone. Practical AI is a show in which technology professionals, business people, students, enthusiasts, and expert guests engage in lively discussions about Artificial Intelligence and related topics (Machine Learning, Deep Learning, Neural Networks, GANs, MLOps, AIOps, and more). The focus is on productive implementations and real-world scenarios that are accessible to everyone. If you want to keep up with the latest advances in AI, while keeping one foot in the real world, then this is the show for you!
241 Episodes
Reverse
Automate all the UIs!

Automate all the UIs!

2023-09-2043:071

Dominik Klotz from askui joins Daniel and Chris to discuss the automation of UI, and how AI empowers them to automate any use case on any operating system. Along the way, the trio explore various approaches and the integration of generative AI, large language models, and computer vision.
Fine-tuning vs RAG

Fine-tuning vs RAG

2023-09-0658:091

In this episode we welcome back our good friend Demetrios from the MLOps Community to discuss fine-tuning vs. retrieval augmented generation. Along the way, we also chat about OpenAI Enterprise, results from the MLOps Community LLM survey, and the orchestration and evaluation of generative AI workloads.
You might have heard a lot about code generation tools using AI, but could LLMs and generative AI make our existing code better? In this episode, we sit down with Mike from TurinTech to hear about practical code optimizations using AI “translation” of slow to fast code. We learn about their process for accomplishing this task along with impressive results when automated code optimization is run on existing open source projects.
The new AI app stack

The new AI app stack

2023-08-2345:091

Recently a16z released a diagram showing the “Emerging Architectures for LLM Applications.” In this episode, we expand on things covered in that diagram to a more general mental model for the new AI app stack. We cover a variety of things from model “middleware” for caching and control to app orchestration.
In this Fully Connected episode, Daniel and Chris kick it off by noting that Stability AI released their SDXL 1.0 LLM! They discuss its virtues, and then dive into a discussion regarding how the United States, European Union, and other entities are approaching governance of AI through new laws and legal frameworks. In particular, they review the White House’s approach, noting the potential for unexpected consequences.
There’s so much talk (and hype) these days about vector databases. We thought it would be timely and practical to have someone on the show that has been hands on with the various options and actually tried to build applications leveraging vector search. Prashanth Rao is a real practitioner that has spent and huge amount of time exploring the expanding set of vector database offerings. After introducing vector database and giving us a mental model of how they fit in with other datastores, Prashanth digs into the trade offs as related to indices, hosting options, embedding vs. query optimization, and more.
It was an amazing week in AI news. Among other things, there is a new NeRF and a new Llama in town!!! Zip-NeRF can create some amazing 3D scenes based on 2D images, and Llama 2 from Meta promises to change the LLM landscape. Chris and Daniel dive into these and they compare some of the recently released OpenAI functionality to Anthropic’s Claude 2.
As a technologist, coder, and lawyer, few people are better equipped to discuss the legal and practical consequences of generative AI than Damien Riehl. He demonstrated this a couple years ago by generating, writing to disk, and then releasing every possible musical melody. Damien joins us to answer our many questions about generated content, copyright, dataset licensing/usage, and the future of knowledge work.
Chris sat down with Varun Mohan and Anshul Ramachandran, CEO / Cofounder and Lead of Enterprise and Partnership at Codeium, respectively. They discussed how to streamline and enable modern development in generative AI and large language models (LLMs). Their new tool, Codeium, was born out of the insights they gleaned from their work in GPU software and solutions development, particularly with respect to generative AI, large language models, and supporting infrastructure. Codeium is a free AI-powered toolkit for developers, with in-house models and infrastructure - not another API wrapper.
In this Fully Connected episode, Daniel and Chris explore recent highlights from the current model proliferation wave sweeping the world - including Stable Diffusion XL, OpenChat, Zeroscope XL, and Salesforce XGen. They note the rapid rise of open models, and speculate that just as in open source software, open models will dominate the future. Such rapid advancement creates its own problems though, so they finish by itemizing concerns such as cybersecurity, workflow productivity, and impact on human culture.
Your feed might be dominated by LLMs these days, but there are some amazing things happening in computer vision that you shouldn’t ignore! In this episode, we bring you one of those amazing stories from Gabriel Ortiz, who is working with the government of Cantabria in Spain to automate cartography and apply AI to geospatial analysis. We hear about how AI tooling fits into the GIS workflow, and Gabriel shares some of his recent work (including work that can identify individual people, invasive plant species, building and more from aerial survey data).
Chris and Daniel take a step back to look at how generative AI fits into the wider landscape of ML/AI and data science. They talk through the differences in how one approaches “traditional” supervised learning and how practitioners are approaching generative AI based solutions (such as those using Midjourney or GPT family models). Finally, they talk through the risk and compliance implications of generative AI, which was in the news this week in the EU.
Daniel had the chance to sit down with @swyx and Alessio from the Latent Space pod in SF to talk about current AI trends and to highlight some key learnings from past episodes. The discussion covers open access LLMs, smol models, model controls, prompt engineering, and LLMOps. This mashup is magical. Don’t miss it!
Lately.AI has been working for years on content generation systems that capture your unique “voice” and are tailored to your unique audience. At first, they didn’t know that they were going to build an AI system, but now they have a state-of-the-art generative platform that provides much more than “prompting” out of thin air. Lately.AI’s CEO Kate explain their journey, her perspective on generative AI in marketing, and much more in this episode!
You can’t build robust systems with inconsistent, unstructured text output from LLMs. Moreover, LLM integrations scare corporate lawyers, finance departments, and security professionals due to hallucinations, cost, lack of compliance (e.g., HIPAA), leaked IP/PII, and “injection” vulnerabilities. In this episode, Chris interviews Daniel about his new company called Prediction Guard, which addresses these issues. They discuss some practical methodologies for getting consistent, structured output from compliant AI systems. These systems, driven by open access models and various kinds of LLM wrappers, can help you delight customers AND navigate the increasing restrictions on “GPT” models.
Large Language Models (LLMs) continue to amaze us with their capabilities. However, the utilization of LLMs in production AI applications requires the integration of private data. Join us as we have a captivating conversation with Jerry Liu from LlamaIndex, where he provides valuable insights into the process of data ingestion, indexing, and query specifically tailored for LLM applications. Delving into the topic, we uncover different query patterns and venture beyond the realm of vector databases.
At the recent ODSC East conference, Daniel got a chance to sit down with Erin Mikail Staples to discuss the process of gathering human feedback and creating an instruction tuned Large Language Models (LLM). They also chatted about the importance of open data and practical tooling for data annotation and fine-tuning. Do you want to create your own custom generative AI models? This is the episode for you!
There are a ton of problems around building LLM apps in production and the last mile of that problem. Travis Fischer, builder of open AI projects like @ChatGPTBot, joins us to talk through these problems (and how to overcome them). He helps us understand the hierarchy of complexity from simple prompting to augmentation, agents, and fine-tuning. Along the way we discuss the frontend developer community that is rapidly adopting AI technology via Typescript (not Python).
Large models on CPUs

Large models on CPUs

2023-05-0238:301

Model sizes are crazy these days with billions and billions of parameters. As Mark Kurtz explains in this episode, this makes inference slow and expensive despite the fact that up to 90%+ of the parameters don’t influence the outputs at all. Mark helps us understand all of the practicalities and progress that is being made in model optimization and CPU inference, including the increasing opportunities to run LLMs and other Generative AI models on commodity hardware.
Causal inference

Causal inference

2023-04-2542:21

With all the LLM hype, it’s worth remembering that enterprise stakeholders want answers to “why” questions. Enter causal inference. Paul Hünermund has been doing research and writing on this topic for some time and joins us to introduce the topic. He also shares some relevant trends and some tips for getting started with methods including double machine learning, experimentation, difference-in-difference, and more.
loading
Comments (6)

Mohammed Boosiri

great talks. I loved the concluding part.

Aug 18th
Reply

Andrew Miller

Processing data is a pretty complex process. This podcast did a pretty good job explaining it. But if you want to learn something more about labeling and annotation, look here https://marketbusinesstimes.com/data-labeling/. In this article, you can find some decent information about raw data processing in machine learning which can really help you down the road.

Apr 20th
Reply

Justin lee

I got a call yesterday from a friend of mine. He told me that he has to do courses in Machine Learning, Data Science. After that I shared the link of this post with him. Because Machine Learning, Data Science and chat gpt https://supercharged-by-ai.com/ service were told on this post. A website link was also given here. You can get the initial information of AI from that website.

Jan 18th
Reply

Denial Brown

I noticed that the educational niche market is now rapidly developing due to companies such as https://geniusee.com/edtech that have simplified the creation and development of software or web products for training. Now there are already good strategies for creating such things.

Dec 10th
Reply

Robert Jackson

An alternative to DigitalOcean hosting: https://scalegrid.io/mysql/digitalocean.html

Sep 6th
Reply

Mark Cund

Great introduction to what's going on in AI. Already started on getting MachineBox up and running. Looking forward to my commutes so I can learn some more! Mark Cund (@AluminumBlonde)

Aug 9th
Reply
Download from Google Play
Download from App Store