Claim Ownership


Subscribed: 0Played: 0


Today we’re joined by Anastasis Germanidis, Co-Founder and CTO of RunwayML. Amongst all the product and model releases over the past few months, Runway threw its hat into the ring with Gen-1, a model that can take still images or video and transform them into completely stylized videos. They followed that up just a few weeks later with the release of Gen-2, a multimodal model that can produce a video from text prompts. We had the pleasure of chatting with Anastasis about both models, exploring the challenges of generating video, the importance of alignment in model deployment, the potential use of RLHF, the deployment of models as APIs, and much more! The complete show notes for this episode can be found at
Today we’re joined by Tom Goldstein, an associate professor at the University of Maryland. Tom’s research sits at the intersection of ML and optimization and has previously been featured in the New Yorker for his work on invisibility cloaks, clothing that can evade object detection. In our conversation, we focus on his more recent research on watermarking LLM output. We explore the motivations behind adding these watermarks, how they work, and different ways a watermark could be deployed, as well as political and economic incentive structures around the adoption of watermarking and future directions for that line of work. We also discuss Tom’s research into data leakage, particularly in stable diffusion models, work that is analogous to recent guest Nicholas Carlini’s research into LLM data extraction.
Today we’re joined by Anna Ivanova, a postdoctoral researcher at MIT Quest for Intelligence. In our conversation with Anna, we discuss her recent paper Dissociating language and thought in large language models: a cognitive perspective. In the paper, Anna reviews the capabilities of LLMs by considering their performance on two different aspects of language use: 'formal linguistic competence', which includes knowledge of rules and patterns of a given language, and 'functional linguistic competence', a host of cognitive abilities required for language understanding and use in the real world. We explore parallels between linguistic competence and AGI, the need to identify new benchmarks for these models, whether an end-to-end trained LLM can address various aspects of functional competence, and much more!  The complete show notes for this episode can be found at
Today we’re joined by Monroe Kennedy III, an assistant professor at Stanford, director of the Assistive Robotics and Manipulation Lab, and a national director of Black in Robotics. In our conversation with Monroe, we spend some time exploring the robotics landscape, getting Monroe’s thoughts on the current challenges in the field, as well as his opinion on choreographed demonstrations like the dancing Boston Robotics machines. We also dig into his work around two distinct threads, Robotic Dexterity, (what does it take to make robots capable of doing manipulation useful tasks with and for humans?) and Collaborative Robotics (how do we go beyond advanced autonomy in robots towards making effective robotic teammates capable of working with human counterparts?). Finally, we discuss DenseTact, an optical-tactile sensor capable of visualizing the deformed surface of a soft fingertip and using that image in a neural network to perform calibrated shape reconstruction and 6-axis wrench estimation. The complete show notes for this episode can be found at
Today we’re joined by Nicholas Carlini, a research scientist at Google Brain. Nicholas works at the intersection of machine learning and computer security, and his recent paper “Extracting Training Data from LLMs” has generated quite a buzz within the ML community. In our conversation, we discuss the current state of adversarial machine learning research, the dynamic of dealing with privacy issues in black box vs accessible models, what privacy attacks in vision models like diffusion models look like, and the scale of “memorization” within these models. We also explore Nicholas’ work on data poisoning, which looks to understand what happens if a bad actor can take control of a small fraction of the data that an ML model is trained on. The complete show notes for this episode can be found at
Today we’re joined by Vinodkumar Prabhakaran, a Senior Research Scientist at Google Research. In our conversation with Vinod, we discuss his two main areas of research, using ML, specifically NLP, to explore these social disparities, and how these same social disparities are captured and propagated within machine learning tools. We explore a few specific projects, the first using NLP to analyze interactions between police officers and community members, determining factors like level of respect or politeness and how they play out across a spectrum of community members. We also discuss his work on understanding how bias creeps into the pipeline of building ML models, whether it be from the data or the person building the model. Finally, for those working with human annotators, Vinod shares his thoughts on how to incorporate principles of fairness to help build more robust models.  The complete show notes for this episode can be found at
Today we’re joined by Robert Osazuwa Ness, a senior researcher at Microsoft Research, to break down the latest trends in the world of causal modeling. In our conversation with Robert, we explore advances in areas like causal discovery, causal representation learning, and causal judgements. We also discuss the impact causality could have on large language models, especially in some of the recent use cases we’ve seen like Bing Search and ChatGPT. Finally, we discuss the benchmarks for causal modeling, the top causality use cases, and the most exciting opportunities in the field.   The complete show notes for this episode can be found at
Today we’re joined by Dimitris Zermas, a principal scientist at agriscience company Sentera. Dimitris’ work at Sentera is focused on developing tools for precision agriculture using machine learning, including hardware like cameras and sensors, as well as ML models for analyzing the vast amount of data they acquire. We explore some specific use cases for machine learning, including plant counting, the challenges of working with classical computer vision techniques, database management, and data annotation. We also discuss their use of approaches like zero-shot learning and how they’ve taken advantage of a data-centric mindset when building a better, more cost-efficient product.
Today we’re joined by Anima Anandkumar, Bren Professor of Computing And Mathematical Sciences at Caltech and Sr Director of AI Research at NVIDIA. In our conversation, we take a broad look at the emerging field of AI for Science, focusing on both practical applications and longer-term research areas. We discuss the latest developments in the area of protein folding, and how much it has evolved since we first discussed it on the podcast in 2018, the impact of generative models and stable diffusion on the space, and the application of neural operators. We also explore the ways in which prediction models like weather models could be improved, how foundation models are helping to drive innovation, and finally, we dig into MineDojo, a new framework built on the popular Minecraft game for embodied agent research, which won a 2022 Outstanding Paper Award at NeurIPS.  The complete show notes for this episode can be found at
Today we continue our AI Trends 2023 series joined by Sameer Singh, an associate professor in the department of computer science at UC Irvine and fellow at the Allen Institute for Artificial Intelligence (AI2). In our conversation with Sameer, we focus on the latest and greatest advancements and developments in the field of NLP, starting out with one that took the internet by storm just a few short weeks ago, ChatGPT. We also explore top themes like decomposed reasoning, causal modeling in NLP, and the need for “clean” data. We also discuss projects like HuggingFace’s BLOOM, the debacle that was the Galactica demo, the impending intersection of LLMs and search, use cases like Copilot, and of course, we get Sameer’s predictions for what will happen this year in the field. The complete show notes for this episode can be found at
Today we’re taking a deep dive into the latest and greatest in the world of Reinforcement Learning with our friend Sergey Levine, an associate professor, at UC Berkeley. In our conversation with Sergey, we explore some game-changing developments in the field including the release of ChatGPT and the onset of RLHF. We also explore more broadly the intersection of RL and language models, as well as advancements in offline RL and pre-training for robotics models, inverse RL, Q learning, and a host of papers along the way. Finally, you don’t want to miss Sergey’s predictions for the top developments of the year 2023!  The complete show notes for this episode can be found at
Today we conclude our coverage of the 2022 NeurIPS series joined by Catherine Nakalembe, an associate research professor at the University of Maryland, and Africa Program Director under NASA Harvest. In our conversation with Catherine, we take a deep dive into her talk from the ML in the Physical Sciences workshop, Supporting Food Security in Africa using Machine Learning and Earth Observations. We discuss the broad challenges associated with food insecurity, as well as Catherine’s role and the priorities of Harvest Africa, a program focused on advancing innovative satellite-driven methods to produce automated within-season crop type and crop-specific condition products that support agricultural assessments. We explore some of the technical challenges of her work, including the limited, but growing, access to remote sensing and earth observation datasets and how the availability of that data has changed in recent years, the lack of benchmarks for the tasks she’s working on, examples of how they’ve applied techniques like multi-task learning and task-informed meta-learning, and much more.  The complete show notes for this episode can be found at
Today we conclude our AWS re:Invent 2022 series joined by Michael Kearns, a professor in the department of computer and information science at UPenn, as well as an Amazon Scholar. In our conversation, we briefly explore Michael’s broader research interests in responsible AI and ML governance and his role at Amazon. We then discuss the announcement of service cards, and their take on “model cards” at a holistic, system level as opposed to an individual model level. We walk through the information represented on the cards, as well as explore the decision-making process around specific information being omitted from the cards. We also get Michael’s take on the years-old debate of algorithmic bias vs dataset bias, what some of the current issues are around this topic, and what research he has seen (and hopes to see) addressing issues of “fairness” in large language models.   The complete show notes for this episode can be found at
Today we continue our NeurIPS 2022 series joined by Tony Jebara, VP of engineering and head of machine learning at Spotify. In our conversation with Tony, we discuss his role at Spotify and how the company’s use of machine learning has evolved over the last few years, and the business value of machine learning, specifically recommendations, hold at the company. We dig into his talk on the intersection of reinforcement learning and lifetime value (LTV) at Spotify, which explores the application of Offline RL for user experience personalization. We discuss the various papers presented in the talk, and how they all map toward determining and increasing a user’s LTV.  The complete show notes for this episode can be found at
More than any system before it, ChatGPT has tapped into our enduring fascination with artificial intelligence, raising in a more concrete and present way important questions and fears about what AI is capable of and how it will impact us as humans. One of the concerns most frequently voiced, whether sincerely or cloaked in jest, is how ChatGPT or systems like it, will impact our livelihoods. In other words, “will ChatGPT put me out of a job???” In this episode of the podcast, I seek to answer this very question by conducting an interview in which ChatGPT is asking all the questions. (The questions are answered by a second ChatGPT, as in my own recent Interview with it, Exploring Large Laguage Models with ChatGPT.) In addition to the straight dialogue, I include my own commentary along the way and conclude with a discussion of the results of the experiment, that is, whether I think ChatGPT will be taking my job as your host anytime soon. Ultimately, though, I hope you’ll be the judge of that and share your thoughts on how ChatGPT did at my job via a comment below or on social media.
Today we continue our re:Invent 2022 series joined by Kumar Chellapilla, a general manager of ML and AI Services at AWS. We had the opportunity to speak with Kumar after announcing their recent addition of geospatial data to the SageMaker Platform. In our conversation, we explore Kumar’s role as the GM for a diverse array of SageMaker services, what has changed in the geospatial data landscape over the last 10 years, and why Amazon decided now was the right time to invest in geospatial data. We discuss the challenges of accessing and working with this data and the pain points they’re trying to solve. Finally, Kumar walks us through a few customer use cases, describes how this addition will make users more effective than they currently are, and shares his thoughts on the future of this space over the next 2-5 years, including the potential intersection of geospatial data and stable diffusion/generative models. The complete show notes for this episode can be found at
Today we’re joined by Disha Singla, a senior director of machine learning engineering at Capital One. In our conversation with Disha, we explore her role as the leader of the Data Insights team at Capital One, where they’ve been tasked with creating reusable libraries, components, and workflows to make ML usable broadly across the company, as well as a platform to make it all accessible and to drive meaningful insights. We discuss the construction of her team, as well as the types of interactions and requests they receive from their customers (data scientists), productionized use cases from the platform, and their efforts to transition from batch to real-time deployment. Disha also shares her thoughts on the ROI of machine learning and getting buy-in from executives, how she sees machine learning evolving at the company over the next 10 years, and much more! The complete show notes for this episode can be found at
Today we’re excited to kick off our coverage of the 2022 NeurIPS conference with Johann Brehmer, a research scientist at Qualcomm AI Research in Amsterdam. We begin our conversation discussing some of the broader problems that causality will help us solve, before turning our focus to Johann’s paper Weakly supervised causal representation learning, which seeks to prove that high-level causal representations are identifiable in weakly supervised settings. We also discuss a few other papers that the team at Qualcomm presented, including neural topological ordering for computation graphs, as well as some of the demos they showcased, which we’ll link to on the show notes page.  The complete show notes for this episode can be found at
Today we’re excited to kick off our 2022 AWS re:Invent series with a conversation with Emad Mostaque, Founder and CEO of is a very popular name in the generative AI space at the moment, having taken the internet by storm with the release of its stable diffusion model just a few months ago. In our conversation with Emad, we discuss the story behind Stability's inception, the model's speed and scale, and the connection between stable diffusion and programming. We explore some of the spaces that Emad anticipates being disrupted by this technology, his thoughts on the open-source vs API debate, how they’re dealing with issues of user safety and artist attribution, and of course, what infrastructure they’re using to stand the model up. The complete show notes for this episode can be found at
Today we're joined by ChatGPT, the latest and coolest large language model developed by OpenAl. In our conversation with ChatGPT, we discuss the background and capabilities of large language models, the potential applications of these models, and some of the technical challenges and open questions in the field. We also explore the role of supervised learning in creating ChatGPT, and the use of PPO in training the model. Finally, we discuss the risks of misuse of large language models, and the best resources for learning more about these models and their applications. Join us for a fascinating conversation with ChatGPT, and learn more about the exciting world of large language models. The complete show notes for this episode can be found at
Comments (19)

Emilia Gray

Even though automation has improved over the years, it still lacks intelligence. Machine learning algorithms can organize data themselves by learning the ownership of specific data types, which makes automation more efficient, you can find good specialists in this field here

May 24th

Flavio Coelho

what's ADP?

Dec 12th

Duncan Pullen

This was a simply amazing episode. so much depth of information about real life and life changing AI/ML

Nov 22nd

Daniel Sierra

Best podcast on machine learning an ai

May 27th

Özgür Yüksel

Thanks a lot for introducing us to the genius of our age. Tremendously inspiring.

Dec 11th

Glory Dey

A very good insightful episode, Maki Moussavi explains the various points in a lucid manner. Truly, we are the captain of our life's ship. We are responsible for our own emotions and actions. Being proactive rather than reactive is the key to success and happiness! I will be reading this book! Thanks for sharing this interesting podcast. Have a great day!

Oct 15th

Glory Dey

I love this channel and all the great podcasts. The topics are very relevant and the speakers are well informed experts so the episodes are very educative. Only request, please change the opening music note of the podcast. It is very unpleasant tune sets a jarring effect right at the beginning. Otherwise all these episodes are very interesting in the field of innovations in Artificial Intelligence and Machine Learning! Regards!

Jun 25th

Billy Bloomer

so smart you can smell it

Jun 14th

raqueeb shaikh

great podcast

May 31st

Loza Boza

Phenomenal discussion. Thank you! Particularly enjoyed the parts on generative models and the link to Daniel Kahneman.

May 20th

simon abdou

Horrible Audio

May 9th

Özgür Yüksel

This is a very realistic and proper episode which explains quantum computing even as alone.

Apr 9th


Hello all, Thanks for podcast Can we combine the two agent learnings from same environment to find the best actions Thanks

Mar 14th

Bhavul Gauri

notes : * Data scientists are not trained to think of money optimisations. plotting cpu usage vs accuracy gives an idea about it. if u increase data 4x as much just to gain 1% increase in accuracy that may not be great because you're using 4 times as much CPU power * a team just decicated to monitoring. i. monitor inputs : should not go beyond a certain range for each feature that you are supposed to have. Nulls ratio shouldn't change by a lot. ii. monitor both business and model metrics. sometimes even if model metrics get better ur business metrics could go low....and this could be the case like better autocompletion makes for low performance spell check OR it could also depend upon other things that have changed. or seasonality. * Data scientists and ML engineers in pairs. ML Engineers get to learn about the model while Data Scientists come up with it. both use same language. ML Engineers make sure it gets scaled up and deployed to production. * Which parameters are somewhat stable no matter how many times you retrain vs what parameters are volatile. the volatile ones could cause drastic changes. so u can reverse engineer this way.

Mar 11th

Abhijeet Gulati

great podcast. do we reference to papers that were discussed by Ganju. good job

Jan 22nd

Khaled Zamer

Super.. very informative. Thanks

Aug 26th

Printing Printing

there is no content lol. Host, please invite real scientists

Jan 1st

James Flint

This is an incredible interview. Dopamine as a correlate of prediction error makes so much sense. Best Twiml talk to date!

Dec 30th

Qanit Al-Syed

conversations drag too much. gets boring. stop the marketing and get to the content

Dec 30th
Download from Google Play
Download from App Store