Large models on CPUs
Update: 2023-05-021
Description
Model sizes are crazy these days with billions and billions of parameters. As Mark Kurtz explains in this episode, this makes inference slow and expensive despite the fact that up to 90%+ of the parameters don’t influence the outputs at all.
Mark helps us understand all of the practicalities and progress that is being made in model optimization and CPU inference, including the increasing opportunities to run LLMs and other Generative AI models on commodity hardware.
Changelog++ members save 1 minute on this episode because they made the ads disappear. Join today!
Sponsors:
- Fastly – Our bandwidth partner. Fastly powers fast, secure, and scalable digital experiences. Move beyond your content delivery network to their powerful edge cloud platform. Learn more at fastly.com
- Fly.io – The home of Changelog.com — Deploy your apps and databases close to your users. In minutes you can run your Ruby, Go, Node, Deno, Python, or Elixir app (and databases!) all over the world. No ops required. Learn more at fly.io/changelog and check out the speedrun in their docs.
Featuring:
Show Notes:
- Neural Magic
- SparseML
- SparseZoo
- Neural Magic Scales up MLPerf™ Inference v3.0 Performance With Demonstrated Power Efficiency; No GPUs Needed
- Deploy Optimized Hugging Face Models With DeepSparse and SparseZoo
- SparseGPT: Remove 100 Billion Parameters for Free
Something missing or broken? PRs welcome!
Comments
Top Podcasts
The Best New Comedy Podcast Right Now – June 2024The Best News Podcast Right Now – June 2024The Best New Business Podcast Right Now – June 2024The Best New Sports Podcast Right Now – June 2024The Best New True Crime Podcast Right Now – June 2024The Best New Joe Rogan Experience Podcast Right Now – June 20The Best New Dan Bongino Show Podcast Right Now – June 20The Best New Mark Levin Podcast – June 2024
In Channel